Genetics and Genomics

GENETICS AND GENOMICS

Genetics and Genomics major

A major in Genetics and Genomics requires 48 credit points from this table including:
(i) 6 credit points of 1000-level core units
(ii) 6 credit points of 1000-level selective units
(iii) 12 credit points of 2000-level units according to the following rules:
(a) 12 credit points of 2000-level core units, or
(b) 12 credit points of 2000-level alternative core units for students in the Animal and Veterinary Biosciences stream, or
(c) 12 credit points of 2000-level alternative core units for students in the Medical Science stream
(iv) 12 credit points of 3000-level core units
(v) 6 credit points of 3000-level selective units
(vi) 6 credit points of 3000-level interdisciplinary project units

Genetics and Genomics minor

A minor in Genetics and Genomics requires 36 credit points from this table including:
(i) 6 credit points of 1000-level core units
(ii) 6 credit points of 1000-level selective units
(iii) 12 credit points of 2000-level units according to the following rules:
(a) 12 credit points of 2000-level core units, or
(b) 12 credit points of 2000-level alternative core units for students in the Animal and Veterinary Biosciences stream, or
(c) 12 credit points of 2000-level alternative core units for students in the Medical Science stream
(iv) 12 credit points of 3000-level core units

Units of study

The units of study are listed below.

1000-level units of study

Core
BIOL1007 From Molecules to Ecosystems

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us. You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
BIOL1907 From Molecules to Ecosystems (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us. This unit of study has the same overall structure as BIOL1007 but the material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be a synthetic biology project investigating genetically engineered organisms. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
Selective
BIOL1006 Life and Evolution

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: 11 x 3-hour lab classes, 2 field excursions Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1906 Life and Evolution (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: 11 x 3-hour lab classes, 3 field excursions Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in an authentic urban biodiversity management research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1996 Life and Evolution (SSP)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS
BIOL1008 Human Biology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or MEDS1001 or MEDS1901 or BIOL1908 or BIOL1998 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, genetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences.
BIOL1908 Human Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or MEDS1001 or MEDS1901 or BIOL1008 or BIOL1998 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Six 3 hour practicals Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences. The advanced unit has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest lecturers from medical science industries. The nature of these components may vary from year to year.
Textbooks
Van Putte, C., Regan, J. and Russo, A. (*) Essentials of Anatomy and Physiology, McGraw Hill.
BIOL1998 Human Biology (Special Studies Program)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1991 or BIOL1996 or MEDS1001 or MEDS1901 or BIOL1008 or BIOL1908 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, genetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences. The practical work syllabus consists of a special project-based laboratory.
CHEM1011 Fundamentals of Chemistry 1A

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see https://sydney.edu.au/students/bridging-courses.html).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1111 Chemistry 1A

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive January,Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round https://sydney.edu.au/students/bridging-courses.html).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
MEDS1001 Human Biology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1008 or BIOL1908 or BIOL1998 or MEDS1901 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the medical sciences suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology and medical sciences. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in the medical sciences.
Textbooks
TBA
MEDS coded units of study are only available to students in the Medical Science stream.

2000-level units of study

Core
BCMB2001 Biochemistry and Molecular Biology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2901 or MEDS2003 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Then we will explore cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Our practicals, along with other guided and online learning sessions will introduce you to widely applied and cutting-edge tools that are essential for modern biochemistry and molecular biology. By the end of this unit, you will be equipped with foundational skills and knowledge to support your studies in the life and medical sciences.
Textbooks
Stryer Biochemistry 8th Edition ISBN-13:978-1-4641-2610-9
BCMB2901 Biochemistry and Molecular Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 or MEDS2003 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study, you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Then we will explore cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. The advanced laboratory component will provide students with an authentic research laboratory experience while in the theory component, current research topics will be presented in a problem-based format through tutorial sessions. This material will be assessed by creative student-centered activities supported by eLearning platforms.
Textbooks
Stryer Biochemistry 8th Edition ISBN-13:978-1-4641-2610-9
GEGE2001 Genetics and Genomics

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: GENE2002 or MBLG2972 or GEGE2901 or MBLG2072 Assumed knowledge: Mendelian genetics; mechanisms of evolution; molecular and chromosomal bases of inheritance; and gene regulation and expression Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution.
GEGE2901 Genetics and Genomics (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: Annual average mark of at least 70 Prohibitions: GENE2002 or MBLG2072 or GEGE2001 or MBLG2972 Assumed knowledge: Mendelian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution. The Advanced mode of Genetics and Genomics will provide you with challenge and a higher level of academic rigour. You will have the opportunity to plan a project that will develop your skills in contemporary genetics/molecular biology techniques and will provide you with a greater depth of disciplinary understanding. The Advanced mode will culminate in a written report and/or in an oral presentation where you will discuss a recent breakthrough that has been enabled by the use of modern genetics and genomics technologies. This is a unit for anyone wanting to better understand the how genetics has shaped the earth and how it will shape the future.
Alternative core for the Animal and Veterinary Biosciences stream
AVBS2005 Animal Energetics and Homeostasis

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: AVBS100X or BIOL1XXX Prohibitions: VETS1032 Assumed knowledge: Knowledge and concepts from BIOL1XX7 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Effective metabolic function is critical for animal health and wellbeing. Key concepts include the comparative differences between animals and humans (eg ruminant metabolism), common disruptions in metabolism and endocrine regulation in companion animals, as well as the impact of metabolic dysfunction in animal production systems (eg bovine ketosis and ovine pregnancy toxaemia). This unit of study begins with an introduction to the metabolic processes of cells, tissues and whole animals by examining the structure ie the cytological and histological characteristics, of animal tissues in the physical context of whole animals. An integrated view is explored of the role of hormones in homeostatic control as dynamic metabolic regulators in wellbeing and the consequences of dysregulation. Students will apply knowledge of animal nutrition and animal structure and function to determine the underlying basis of metabolic disease and disorders and, how to alleviate or mitigate the dysfunction. This will be done by utilising an understanding of adaptive metabolism in animals to interpret biochemical data and identify disruptions to metabolism and homeostatic mechanisms. Clinical veterinary medicine examples of disruption to metabolism are used to emphasise normal metabolic processes. Students will develop key skills in microscopy, cytology and histology for broad application in the sciences.
Textbooks
Recommended text: Alberts et al., (2014) Essential Cell Biology 4th Edition. Garland Publishing, New York. Sjaastad, O.V, Hove, K and Sand, O. (2003) Physiology of Domestic Animals. Scandinavian Veterinary Press.
GEGE2001 Genetics and Genomics

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: GENE2002 or MBLG2972 or GEGE2901 or MBLG2072 Assumed knowledge: Mendelian genetics; mechanisms of evolution; molecular and chromosomal bases of inheritance; and gene regulation and expression Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution.
GEGE2901 Genetics and Genomics (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: Annual average mark of at least 70 Prohibitions: GENE2002 or MBLG2072 or GEGE2001 or MBLG2972 Assumed knowledge: Mendelian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution. The Advanced mode of Genetics and Genomics will provide you with challenge and a higher level of academic rigour. You will have the opportunity to plan a project that will develop your skills in contemporary genetics/molecular biology techniques and will provide you with a greater depth of disciplinary understanding. The Advanced mode will culminate in a written report and/or in an oral presentation where you will discuss a recent breakthrough that has been enabled by the use of modern genetics and genomics technologies. This is a unit for anyone wanting to better understand the how genetics has shaped the earth and how it will shape the future.
Alternative core for the Medical Science stream
GEGE2001 Genetics and Genomics

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: GENE2002 or MBLG2972 or GEGE2901 or MBLG2072 Assumed knowledge: Mendelian genetics; mechanisms of evolution; molecular and chromosomal bases of inheritance; and gene regulation and expression Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution.
GEGE2901 Genetics and Genomics (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: Annual average mark of at least 70 Prohibitions: GENE2002 or MBLG2072 or GEGE2001 or MBLG2972 Assumed knowledge: Mendelian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution. The Advanced mode of Genetics and Genomics will provide you with challenge and a higher level of academic rigour. You will have the opportunity to plan a project that will develop your skills in contemporary genetics/molecular biology techniques and will provide you with a greater depth of disciplinary understanding. The Advanced mode will culminate in a written report and/or in an oral presentation where you will discuss a recent breakthrough that has been enabled by the use of modern genetics and genomics technologies. This is a unit for anyone wanting to better understand the how genetics has shaped the earth and how it will shape the future.
MEDS2003 Biochemistry and Molecular Biology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 6p from (BIOL1XX7 or MBLG1XX1) and 6cp of (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 or BCMB2901 or BMED2804 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? What happens as a result of disease or genetic mutation? In this unit of study, you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Then we will explore cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Our practicals, along with other guided and online learning sessions will introduce you to widely applied and cutting-edge tools that are essential for modern biochemistry and molecular biology. By the end of this unit, you will be equipped with foundational skills and knowledge to support your studies in the medical and life sciences.
Textbooks
Canvas, ELN Peerwise Site, Blackboard LMS Textbook: Biochemistry - Berg, Tymoczko, Gatto, Stryer 8th Ed or higher Wikipedia

3000-level units of study

Core
BIOL3018 Gene Technology and Genomics

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX or MEDS2003) Prohibitions: BIOL3918 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the regulation, impact and implications of genetic engineering and genomics. Topics include biological sequence data and databases, comparative genomics, the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines, new diagnostic techniques for human and veterinary disease, and the genetic engineering of animals and plants. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and bioinformatics, immunological detection of proteins, and the genetic transformation and assay of plants.
BIOL3918 Gene Technology and Genomics (Adv)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of 75 or above in (GEGE2X01 or MBLG2X72 or GENE2002) and a mark of 75 or above in (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX or MEDS2003) Prohibitions: BIOL3018 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of BIOL3018 Gene Technology and Genomics. The content and nature of these components may vary from year to year.
GEGE3004 Applied Genomics

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 6cp of (GEGE2X01 or QBIO2XXX or DATA2X01 or GENE2XXX or MBLG2X72 or ENVX2001 or DATA2X02) Prohibitions: ANSC3107 Assumed knowledge: Genetics at 2000 level, Biology at 1000 level, algebra Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: This unit must be taken by all students in the Genetics and Genomics major.
The average mammalian genome is 3 billion nucleotides long and some other organisms have genomes that are even larger. Working with DNA at the nucleotide level on an organismal scale is impossible without the assistance of high performance computing. This unit will investigate strategies to manipulate genomic data on a whole organism scale. You will learn how scientists use high performance computing and web-based resources to compare and assemble genomes, map genes that cause specific phenotypes, and uncover mutations that cause phenotypic changes in organisms that influence health, external characteristics, production and disease. By doing this unit you will develop skills in the analysis of big data, you will gain familiarity with high performance computing worktop environments and learn to use bioinformatics tools that are commonly applied in research.
Major Selective
ANSC3105 Animal Biotechnology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: GEGE2X01 or GENE2002 or AVBS2005 or MBLG2X72 or VETS1032 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: laboratory practical classes Mode of delivery: Normal (lecture/lab/tutorial) day
Can genome editing improve animal health and welfare while increasing production outcomes? Will immune based therapy improve cancer outcomes for animals? Can rapid molecular diagnostics identify illegal animal traffic? Will big data generated from sensor technology provide novel solutions for animal management? With a focus on new and emerging technologies, this course addresses these and other topics through a mixture of lectures, tutorials, laboratories, seminars and directed learning instruction.
BCMB3004 Beyond The Genome

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points from (AMED3001 or BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB2X01 or BCMB2X02 or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or MEDS2003 or PCOL2X21 or QBIO2001) Prohibitions: BCHM3X92 or BCMB3904 Assumed knowledge: Biochemistry, genetics, cell and/or molecular biology concepts at 2000-level units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The sequencing of the human genome was a landmark achievement in science and medicine, marking the 'Age of Genomics'. Now we can access the blueprints for life, but need to uncover how those blueprints work, allowing organisms to respond to internal and external environmental changes, and how we can utilise this plethora of DNA sequence information to improve human and planetary health. This unit will investigate the function of the genome by examining the proteome, metabolome and beyond. You will investigate links between the central dogma of molecular biology and the complexities of living genomes - from modifications that massively increase diversity to the dynamic metabolome. You will explore fundamental cellular processes and discover how they are shaped by the proteome via gene expression, post-translational modification and protein complex formation. These processes will be examined in the context of human health and cardiovascular and metabolic disorders (e. g. type 2 diabetes) to demonstrate how global approaches can define, diagnose and help develop treatments for disease. You will practice methods employed in the post-genome era, including the 'Multi-omics' approaches that provide a global view of living systems, and discover how they are applied to solve problems in biology, biomedicine and agriculture. By the end of the unit students will understand why global 'omics approaches are needed in the post-genome era and know how best to apply such tools to given biological and biomedical problems.
BCMB3904 Beyond The Genome (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average mark of 75 or above in 12 credit points from (AMED3001 or BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB2X01 or BCMB2X02 or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or MEDS2003 or PCOL2X21 or QBIO2001) Prohibitions: BCHM3X92 or BCMB3004 Assumed knowledge: Biochemistry, genetics, cell and/or molecular biology concepts at 2000-level units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The sequencing of the human genome was a landmark achievement in science and medicine, marking the 'Age of Genomics'. Now we can access the blueprints for life, but need to uncover how those blueprints work, allowing organisms to respond to internal and external environmental changes, and how we can utilise this plethora of DNA sequence information to improve human and planetary health. This unit will investigate the function of the genome by examining the proteome, metabolome and beyond. You will investigate links between the central dogma of molecular biology and the complexities of living genomes - from modifications that massively increase diversity to the dynamic metabolome. You will explore fundamental cellular processes and discover how they are shaped by the proteome via gene expression, post-translational modification and protein complex formation. These processes will be examined in the context of human health and cardiovascular and metabolic disorders (e. g. type 2 diabetes) to demonstrate how global approaches can define, diagnose and help develop treatments for disease. You will practice methods employed in the post-genome era, including the 'Multi-omics' approaches that provide a global view of living systems, and discover how they are applied to solve problems in biology, biomedicine and agriculture. Beyond the Genome (Advanced) has the same overall structure as BCMB3004 but focuses on a more advanced level of practical work, data analysis and interpretation, using cutting-edge technologies. By the end of the unit students will understand why global 'omics approaches are needed in the post-genome era and know how best to apply such tools to given biological and biomedical problems.
BIOL3005 Evolutionary Biology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (12cp of BIOL2XXX) or [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3044 or BIOL3025 or BIOL3925 or BIOL3944 or PLNT3003 or PLNT3903 Assumed knowledge: Students should be familiar with DNA and the genetic code, understand the principles of biological evolution, and have basic laboratory skills like pipetting. A knowledge of elementary statistics and probability is assumed Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: 24-hour period over a weekend during semester. Mode of delivery: Normal (lecture/lab/tutorial) day
Evolution is the biological process that has generated the biodiversity on this planet. It explains the common ancestry of all life on earth, why all organisms use the same genetic code, and why major life forms are constrained to a relatively small number of basic body plans such as four limbs in tetrapods. Thus, the principles of evolution and population genetics underpin all biology, including ecology, medicine, and agriculture. In this unit, you will explore the mechanisms that generate evolutionary change across geological and contemporary scales. You will learn how to use DNA sequences to reconstruct the relationships among organisms and to estimate evolutionary timescales. Evolution is an ongoing process, so you will use genetic techniques to discover whether populations are divided into subpopulations. This unit will examine a variety of organisms, including Australian invertebrates, vertebrates, and plants. By completing this unit, you will develop skills in evolutionary thinking, phylogenetic analysis, population genetics, and genomics. You will learn about fundamental aspects of evolution such as adaptation, sexual selection, symbiosis, and the origins of life. You will gain general skills in computer literacy, data management, and data analysis.
Interdisciplinary Project
GEGE3888 Genomics Interdisciplinary Project

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12cp from (GEGE2X01 or GENE2002 or AVBS2005 or BCMB2X01 or BCHM2X72 or MEDS2003 or QBIO2001 or ENVX2001) Assumed knowledge: Year 2 of Genetics and Genomics major should be complete Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Our ever-changing world requires knowledge that extends across multiple disciplines. The ability to identify and explore interdisciplinary links is a crucial skill for emerging professionals and researchers alike. This unit presents the opportunity to bring together the concepts and skills you have learnt in your discipline and apply them to a real-world problem; you will work on an authentic project involving genetics and genomics. In this unit, you will continue to understand and explore disciplinary knowledge, while also meeting and collaborating with students from across the University through project-based learning; identifying and solving problems, collecting and analysing data and communicating your findings to a diverse audience. All of these skills are highly valued by employers. This unit will foster the ability to work in interdisciplinary teams, and this is essential for both professional and research pathways in future.
SCPU3001 Science Interdisciplinary Project

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive February,Intensive July,Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 96 credit points Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This interdisciplinary unit provides students with the opportunity to address complex problems identified by industry, community, and government organisations, and gain valuable experience in working across disciplinary boundaries. In collaboration with a major industry partner and an academic lead, students integrate their academic skills and knowledge by working in teams with students from a range of disciplinary backgrounds. This experience allows students to research, analyse and present solutions to a real-world problem, and to build on their interpersonal and transferable skills by engaging with and learning from industry experts and presenting their ideas and solutions to the industry partner.