Medicinal Chemistry Descriptions
MEDICINAL CHEMISTRY
Medicinal Chemistry major
A major in Medicinal Chemistry requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level core units
(iii) 6 credit points of pharmacology units according to the following:
(a) 6 credit points of 2000-level PCOL coded units or
(b) 6 credit points of 2000-level MEDS coded pharmacology units for students in the Medical Science Stream
(iv) 12 credit points of 3000-level major core units
(v) 6 credit points of 3000-level chemistry selective units
(vi) 6 credit points of 3000-level interdisciplinary project units
Medicinal Chemistry minor
A minor in Medicinal Chemistry requires 36 credit points from this table including:
(i) 12 credit points 1000-level core units
(ii) 6 credit points of 2000-level core units
(iii) 6 credit points of pharmacology units according to the following:
(a) 6 credit points of 2000-level PCOL coded units or
(b) 6 credit points of 2000-level MEDS coded pharmacology units for students in the Medical Science stream
(iv) 6 credit points of 3000-level minor core units
(v) 6 credit points of 3000-level minor selective units
Units of study
The units of study are listed below.
1000-level units of study
Core
CHEM1011 Fundamentals of Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February). Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see https://sydney.edu.au/students/bridging-courses.html).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1111 Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Intensive January,Semester 1,Semester 2 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round https://sydney.edu.au/students/bridging-courses.html).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures and 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3hr practical per week for 12 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, presentations, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1012 Fundamentals of Chemistry 1B
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 2 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prerequisites: CHEM1XX1 Prohibitions: CHEM1002 or CHEM1102 or CHEM1902 or CHEM1904 or CHEM1108 or CHEM1112 or CHEM1912 or CHEM1992 Assessment: quizzes, assignments, laboratory attendance and log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Chemistry transforms the way we live. It provides the basis for understanding biological, geological and atmospheric processes, how medicines work, the properties of materials and substances, how beer is brewed, and for obtaining forensic evidence. This unit of study builds upon your prior knowledge of chemistry to further develop your knowledge and skills in chemistry for broad application. You will learn about organic chemistry reactions, structural determination, nitrogen chemistry, industrial processes, kinetics, electrochemistry, thermochemistry, phase behaviour, solubility equilibrium and chemistry of metals. You will further develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through enquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. Fundamentals of Chemistry 1B is built on a satisfactory prior knowledge of Fundamentals of Chemistry 1A. Compared to the mainstream Chemistry 1B, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1112 Chemistry 1B
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Intensive January,Semester 1,Semester 2 Classes: 1x3-hr lecture; 1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prerequisites: CHEM1111 or CHEM1911 or CHEM1991 or CHEM1101 or CHEM1901 or CHEM1903 or (75 or above in CHEM1011 or CHEM1001) Prohibitions: CHEM1002 or CHEM1102 or CHEM1902 or CHEM1904 or CHEM1108 or CHEM1012 or CHEM1912 or CHEM1992 Assessment: quizzes, assignments, laboratory attendance and log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Chemistry transforms the way we live. It provides the basis for understanding biological, geological and atmospheric processes, how medicines work, the properties of materials and substances, how beer is brewed, and for obtaining forensic evidence. This unit of study builds upon your prior knowledge of chemistry to further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, industrial processing, and further study in chemistry. You will learn about organic chemistry reactions, structural determination, nitrogen chemistry, industrial processes, kinetics, electrochemistry, thermochemistry, phase behaviours, solubility equilibrium and chemistry of metals. You will further develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do we develop lotions that don't burn us, how do we measure UV absorption by sunscreens, how can we measure and alter soil pH, how are sticky things made, and how do we determine the concentration of vitamin C in juice? Through enquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. Chemistry 1B is built on a satisfactory prior knowledge of Chemistry 1A.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1912 Chemistry 1B (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 2 Classes: 3x1-hr lectures and 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prerequisites: CHEM1911 or CHEM1991 or CHEM1901 or CHEM1903 or (75 or above in CHEM1111 or CHEM1101) or (90 or above in HSC Chemistry or equivalent) Prohibitions: CHEM1002 or CHEM1102 or CHEM1902 or CHEM1904 or CHEM1108 or CHEM1012 or CHEM1112 or CHEM1992 Assessment: quizzes, assignments, laboratory attendance and log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who commence in semester 2 are strongly advised that you would be better served by taking the mainstream level units in sequence, Chemistry 1A before Chemistry 1B, rather than the Advanced units in the opposite order.
Chemistry transforms the way we live. It provides the basis for understanding biological, geological and atmospheric processes, how medicines work, the properties of materials and substances, how beer is brewed, and for obtaining forensic evidence. This unit of study builds upon your prior knowledge of chemistry to further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about organic chemistry reactions, structural determination, nitrogen chemistry, industrial processes, kinetics, electrochemistry, thermochemistry, phase behaviour, solubility equilibrium and chemistry of metals. You will further develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through enquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. Chemistry 1B (Advanced) is built on a satisfactory prior knowledge of Chemistry 1A (Advanced). Compared to the mainstream Chemistry 1B, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1992 Chemistry 1B (Special Studies Program)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 2 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 12 weeks Prerequisites: 75 or above in CHEM1991 or CHEM1903 or (90 or above in HSC Chemistry or equivalent) Prohibitions: CHEM1002 or CHEM1102 or CHEM1902 or CHEM1904 or CHEM1108 or CHEM1012 or CHEM1112 or CHEM1912 Assessment: quizzes, assignment, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Entry is by invitation. This unit of study is deemed to be an Advanced unit of study. Students who commence in semester 2 are strongly advised that you would be better served by taking the mainstream level units in sequence, Chemistry 1A before Chemistry 1B, rather than the Special Studies Program units in the opposite order.
Chemistry transforms the way we live. It provides the basis for understanding biological, geological and atmospheric processes, how food and medicines work, the properties of materials and substances. This unit of study builds upon your prior knowledge of chemistry to further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, industrial processing, and further study in chemistry. You will learn about organic chemistry reactions, structural determination, nitrogen chemistry, industrial processes, kinetics, electrochemistry, thermochemistry, phase behaviour, solubility equilibrium and chemistry of metals. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as a demonstrated aptitude. Chemistry 1B (Special Studies Program) is restricted to students who have gained a Distinction in Chemistry 1A (Special Studies Program) or by invitation. The practical work syllabus for Chemistry 1B (Special Studies Program) is very different from that for Chemistry 1B and Chemistry 1B (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1B (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
2000-level units of study
Core
CHEM2521 Molecular Stability and Reactivity
Credit points: 6 Teacher/Coordinator: Professor Peter Harrowell Session: Semester 1 Classes: 3 x 1hr lecture/week, 1 x 1hr tutorial/week, 6 x 4hrs no experiential laboratory class Prerequisites: (CHEM1011 or CHEM1111 or CHEM1911 or CHEM1991 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1001) and (CHEM1012 or CHEM1112 or CHEM1912 or CHEM1992 or CHEM1102 or CHEM1902 or CHEM1904 or CHEM1002 ) Prohibitions: CHEM2921 or CHEM2991 or CHEM2401 or CHEM2911 or CHEM2915 Assessment: 2 x in-semester test (10%), 13 x pre-lecture quizzes (10%), 4 x laboratory reports (18%), 2 x laboratory presentations (7%), final exam (55%) Mode of delivery: Normal (lecture/lab/tutorial) day
There are over 144 million chemical substances so far identified, a diversity that makes possible the rich fabric of the material and biological worlds. Underpinning this huge diversity are a few fundamental rules of electronic arrangements in atoms and molecules that determine what molecules will be stable and when they will undergo transformation by chemical reaction. This unit will describe these fundamental rules and investigate how electronic rearrangements stabilise molecules by forming covalent bonds. You will investigate the quantum theory of bonding and apply these concepts to establish the rules that govern bond geometries, aromaticity, substitution and elimination reactions. You will investigate the bonding of metal complexes and the relation between magnetism and structure in these compounds. You will learn the fundamentals of electronic and vibrational spectroscopies and how these techniques are used to measure molecular properties. By doing this unit you will develop the fundamental understanding of chemical stability and reactivity essential for further work in all chemically related fields and have established a solid foundation for further study in chemistry.
CHEM2921 Molecular Stability and Reactivity (Advanced)
Credit points: 6 Teacher/Coordinator: Professor Peter Harrowell Session: Semester 1 Classes: 3 x 1hr lecture/week for 13 weeks, 1 x 1hr tutorial/week for 13 weeks, 6 x 4hrs laboratory class Prerequisites: A mark of 65 or above in (CHEM1111 or CHEM1911 or CHEM1991 or CHEM1011 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1001) and a mark of 65 or above in (CHEM1112 or CHEM1912 or CHEM1992 or CHEM1012 or CHEM1102 or CHEM1902 or CHEM1904 or CHEM1002) Prohibitions: CHEM2521 or CHEM2991 or CHEM2401 or CHEM2911 or CHEM2915 Assessment: 2 x in-semester test (10%), 13 x pre-lecture quiz (10%), 4 x laboratory reports (18%), 2 x laboratory presentations (7%), final exam (55%) Mode of delivery: Normal (lecture/lab/tutorial) day
There are over 144 million chemical substances so far identified, a diversity that makes possible the rich fabric of the material and biological worlds. Underpinning this huge diversity are a few fundamental rules of electronic arrangements in atoms and molecules that determine what molecules will be stable and when they will undergo transformation by chemical reaction. This unit will describe these fundamental rules and investigate how electronic rearrangements stabilise molecules by forming covalent bonds. You will investigate the quantum theory of bonding and apply these concepts to establish the rules that govern bond geometries, aromaticity, substitution and elimination reactions. You will investigate the bonding of metal complexes and the relation between magnetism and structure in these compounds. You will learn the fundamentals of electronic and vibrational spectroscopies and how these techniques are used to measure molecular properties. Molecular Stability and Reactivity (Adv) differs from CHEM2521 in that the laboratory consists of open-ended discovery-oriented exercises. By doing this unit you will develop the fundamental understanding of chemical stability and reactivity essential for further work in all chemically related fields and have established a solid foundation for further study in chemistry.
CHEM2991 Molecular Stability and Reactivity (SSP)
Credit points: 6 Teacher/Coordinator: Professor Peter Harrowell Session: Semester 1 Classes: 3 x 1hr lecture/week for 13 weeks, 1 x 1hr SSP seminar/week for 12 weeks, 6 x 4hrs laboratory class Prerequisites: A mark of 75 or above in (CHEM1111 or CHEM1911 or CHEM1991 or CHEM1011 or CHEM1901 or CHEM1903 or CHEM1011 or CHEM1001) and a mark of 75 or above in (CHEM1112 or CHEM1912 or CHEM1992 or CHEM1012 or CHEM1902 or CHEM1904 or CHEM1002) Prohibitions: CHEM2921 or CHEM2521 or CHEM2401 or CHEM2911 or CHEM2915 Assessment: 2 x in-semester test (7.5%), 2 x 2000 word essay (15%), 4 x laboratory reports (18%), 2 x laboratory presentations (7%), final exam (52.5%) Mode of delivery: Normal (lecture/lab/tutorial) day
There are over 144 million chemical substances so far identified, a diversity that makes possible the rich fabric of the material and biological worlds. Underpinning this huge diversity are a few fundamental rules of electronic arrangements in atoms and molecules that determine what molecules will be stable and when they will undergo transformation by chemical reaction. This unit will describe these fundamental rules and investigate how electronic rearrangements stabilise molecules by forming covalent bonds. You will investigate the quantum theory of bonding and apply these concepts to establish the rules that govern bond geometries, aromaticity, substitution and elimination reactions. You will investigate the bonding of metal complexes and the relation between magnetism and structure in these compounds. You will learn the fundamentals of electronic and vibrational spectroscopies and how these techniques are used to measure molecular properties. Molecular Stability and Reactivity (SSP) differs from CHEM2921 in that it includes an additional seminar series on three research-led topics in chemistry. By doing this unit you will develop the fundamental understanding of chemical stability and reactivity essential for further work in all chemically related fields and have established a solid foundation for further study in chemistry.
PCOL coded
PCOL2021 Key Concepts in Pharmacology
Credit points: 6 Teacher/Coordinator: Dr Brent McParland Session: Semester 1 Classes: Online mini-lectures, webinars, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry-, multimedia module- and data analysis-based workshops (5 hours per week for 13 weeks). Prerequisites: CHEM1XX1 or CHEM1903 Prohibitions: PCOL2555 or PCOL2011 or MEDS2002 or BMED2401 or BMED2801 or BMED2802 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 or MEDS2002 Assumed knowledge: [(BIOL1XX7 or MBLG1XX1) or (MEDS1X01 or BIOL1XX8 or BIOL1XX3) Assessment: Cognitive, problem-based examination (40%), poster presentation (10%), practical exercises (20%), written research topics (10%), online quizzes (10%), and contribution to online discussion (10%). Mode of delivery: Normal (lecture/lab/tutorial) day
Pharmacology is the study of the properties and biological actions of drugs and chemicals and the keys role they play in the prevention and treatment of human diseases. In this unit of study you will be introduced to the fundamental concepts in pharmacology: a) principles of drug action, b) pharmacokinetics and precision medicine, c) drug design, and d) drug development and regulation. Additionally, you will learn the tools pharmacologists use in their investigations and develop skills in laboratory and problem-based enquiry. In both face-to-face and online learning environments you will learn the core concepts underpinning pharmacology and will have the opportunity to explore and apply these concepts through practicals, computer-aided learning and problem-based workshops. By undertaking this unit you will not only learn to view health and disease through the lens of a pharmacologist, you will further develop valuable skills in critical thinking and problem solving, communication, digital literacy, teamwork and interdisciplinary effectiveness. This unit will help you to develop a coherent and connected knowledge of the medical sciences and their broad applications, while also giving you the foundations for increasing your disciplinary expertise in pharmacology.
Textbooks
All resources will be made available through the Canvas LMS UoS site. Links to other learning technologies will be available via Canvas LMS. Textbooks will be available for purchase from Co-op bookshop, in hard copy and online via the library.
MEDS coded pharmacology
MEDS2002 Key Concepts in Pharmacology
Credit points: 6 Teacher/Coordinator: A/Prof Tina Hinton Session: Semester 1 Classes: Lectures, seminars, practicals, team-based- and data analysis-based workshops Prerequisites: CHEM1XX1 or CHEM1903 Prohibitions: PCOL2555 or PCOL2011 or PCOL2021 or BMED2401 or BMED2801 or BMED2802 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 Assumed knowledge: [(BIOL1XX7 or MBLG1XX1) or (MEDS1X01 or BIOL1XX8 or BIOL1XX3) Assessment: Cognitive, problem-based examination (40%), poster presentation (10%), practical exercises and peer evaluation (20%), online quizzes (10%), personal reflection (5%), contribution to online discussion (5%), integrated assessment (10%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: This unit must be taken by all students enrolled in the BSc (Medical Science)
Pharmacology is the study of the properties and biological actions of drugs and chemicals and the keys role they play in the prevention and treatment of human diseases. In this unit of study you will be introduced to the fundamental concepts in pharmacology: a) principles of drug action, b) pharmacokinetics and precision medicine, c) drug design, and d) drug development and regulation. Additionally, you will learn the tools pharmacologists use in their investigations and develop skills in laboratory and problem-based enquiry. In both face-to-face and online learning environments you will learn the core concepts underpinning pharmacology and will have the opportunity to explore and apply these concepts through practicals, computer-aided learning and problem-based workshops. By undertaking this unit you will not only learn to view health and disease through the lens of a pharmacologist, you will further develop valuable skills in critical thinking and problem solving, communication, digital literacy, teamwork and interdisciplinary effectiveness. This unit will help you to develop a coherent and connected knowledge of the medical sciences and their broad applications, while also giving you the foundations for increasing your disciplinary expertise in pharmacology.
Textbooks
All resources will be made available through the Canvas LMS UoS site. Links to other learning technologies will be available via Canvas LMS. Textbooks will be available for purchase from Co-op bookshop, in hard copy and online via the library.
(MEDS coded unit of study are only available to students in the Medical Science stream).
3000-level units of study
Major Core
MCHM3001 From Molecules to Therapeutics
Credit points: 6 Teacher/Coordinator: A/Prof Margaret Sunde Session: Semester 1 Classes: lecture 2 hrs/week Prerequisites: [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402) or (BMED2401 and BMED2405)] or (12cp from BCMB2XXX) and [(CHEM2401 or CHEM2521 or CHEM2911 or CHEM2915 or CHEM2921 or CHEM2991)] Prohibitions: MCHM3901 Assessment: 2 x in-class test (10%), oral presentation (10%), 2 x group workshop (20%), lab report (20%), final exam (40%) Practical field work: Workshops and labs up to 4hr/week for 12 wks Mode of delivery: Normal (lecture/lab/tutorial) day
Major changes to the way we discover and develop new medicines have taken place in recent years. Sequencing of the human genome has revolutionised drug target identification and therapeutic design. Approaches that combine molecular biology and intensive data analysis are key to the development of effective personalised and precision therapies. New methods in organic synthesis have accelerated how we explore chemical space and parallel developments in nanotechnology are driving innovative drug delivery methods. Improvements in cell, tissue and animal models of human disease are changing how drugs are identified and tested. In this unit, you will explore how these new ideas and technologies are transforming medicinal chemistry. You will learn and apply such techniques to the molecular-level understanding of diseases and the design of effective therapeutics. You will learn the procedures leading to drug registration and regulation. You will participate in enquiry-led practicals that reinforce the concepts of the unit and develop your skills in cutting-edge methods used in modern medicinal chemistry. By studying this unit you will build knowledge and skills that will enable you to play a role in creating therapeutics that will impact lives.
MCHM3901 From Molecules to Therapeutics (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Margaret Sunde Session: Semester 1 Classes: Lecture 2 hrs/week.
Students in the Advanced unit of study will work in smaller groups and tackle alternative higher-level tasks in workshops and labs that broaden and extend their knowledge and expertise. Prerequisites: A mark of 70 or above in each of [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402) or (BMED2401 and BMED2405) or in each unit of (12cp from BCMB2XXX)] AND a mark of 70 or above in [(CHEM2401 or CHEM2521 or CHEM2911 or CHEM2915 or CHEM2921 or CHEM2991)] Prohibitions: MCHM3001 Assessment: 2 x in-class test (10%), oral presentation (10%), 2 x group workshop (20%), lab report (20%), final exam (40%). Practical field work: workshops and labs up to 4hr/week for 12 wks. Students in the Advanced unit of study will work in smaller groups and tackle alternative higher-level tasks in workshops and labs that broaden and extend their knowledge and expertise. Mode of delivery: Normal (lecture/lab/tutorial) day
Major changes to the way we discover and develop new medicines have taken place in recent years. Sequencing of the human genome has revolutionised drug target identification and therapeutic design. Genomics approaches that combine molecular biology and intensive data analysis are key to the development of personalised and precision therapies. New methods in organic synthesis have accelerated how we explore chemical space, developments in nanotechnology are driving innovative drug delivery methods. In this unit you will explore how these new ideas and technologies transforming medicinal chemistry. You will learn and apply such techniques to the molecular-level understanding of diseases and the design of effective therapeutics. You will learn the procedures leading to drug registration and regulation. You will participate in enquiry-led practicals that reinforce the concepts of the unit and develop your skills in cutting-edge methods used in modern medicinal chemistry. By studying this unit you will build knowledge and skills that will enable you to play a role in creating therapeutics that will impact lives. You will learn and apply such techniques to the molecular-level understanding of diseases and the design of effective therapeutics. The advanced unit has the same overall concepts as the mainstream unit but the material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components, which may vary from year to year.
PCOL3012 Drug Design and Development
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX Prohibitions: PCOL3912 Assessment: One 2 hour exam, class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study is designed to introduce students with a basic understanding of pharmacology to the field of medicinal chemistry associated with drug design and development. The course covers the fundamental aspects of drug discovery and development with reference to the essentials of chemistry and illustrates drug development with examples that include neuraminidase inhibitors and angiotensin converting enzyme inhibitors. The role of computers in drug design is emphasised by classwork and assignments on molecular modelling and structure-activity relationships. The course also extends to a section on the design of diverse pharmacological agents which include compounds for imaging by positron emission tomography (PET), and kinase inhibitors.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.
PCOL3912 Drug Design and Development (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: a mark of 70 or above in {(PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX} Prohibitions: PCOL3012 Assessment: One 2 hour exam, in class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will consist of the lecture and practical components of PCOL3012. Students will be set special advanced assignments related to the material covered in core areas. These may also involve advanced practical work or detailed investigation of a theoretical problem.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.
Chemistry selective
CHEM3110 Biomolecules: Properties and Reactions
Credit points: 6 Session: Semester 1 Classes: Two 1-hour lectures and two 4-hour practicals per week for half of semester Prerequisites: [(CHEM2401 or CHEM2911 or CHEM2915) AND (CHEM2402 or CHEM2912 or CHEM2916)] OR (CHEM2521 or CHEM2921 or CHEM2991) Prohibitions: CHEM3910 Assessment: Assignment, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
DNA, proteins and carbohydrates represent three classes of essential biomolecules present in all biological systems. This unit will cover the structure, reactivity and properties of biomolecules and the building blocks from which these molecules are assembled. Interactions between biomolecules and metalions, small molecules and other biomolecules will be covered and the chemical tools for studying biomolecules highlighted. The design and synthesis of small molecules which mimic the functions of biomolecules will also be illustrated.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
CHEM3910 Biomolecules: Properties and Reactions Adv
Credit points: 6 Session: Semester 1 Classes: Two 1-hour lectures per week, one 1-hour seminar per week, and two 4-hour practicals per week for half of semester. Prerequisites: [(65 or greater in (CHEM2401 or CHEM2911 or CHEM2915)) AND (65 or greater in (CHEM2402 or CHEM2912 or CHEM2916))] OR (65 or greater in (CHEM2521 or CHEM2921 or CHEM2991)) Prohibitions: CHEM3110 Assessment: Assignments, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
DNA, proteins and carbohydrates represent three classes of essential biomolecules present in all biological systems. This unit will cover the structure, reactivity and properties of biomolecules and the building blocks from which these molecules are assembled. Interactions between biomolecules and metal ions, small molecules and other biomolecules will be covered and the chemical tools for studying biomolecules highlighted. The design and synthesis of small molecules which mimic the functions of biomolecules will also be illustrated. CHEM3910 students attend the same lectures as CHEM3110 students but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
CHEM3115 Synthetic Medicinal Chemistry
Credit points: 6 Session: Semester 2 Classes: Two 1-hour lectures per week and two 4-hour practicals per week for half of semester. Prerequisites: [(CHEM2401 or CHEM2911 or CHEM2915) AND (CHEM2402 or CHEM2912 or CHEM2916)] OR (CHEM2521 or CHEM2921 or CHEM2991) Prohibitions: CHEM3915 Assessment: Assignment, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
The development of new pharmaceuticals fundamentally relies on the ability to design and synthesize new compounds. Synthesis is an enabling discipline for medicinal chemistry - without it, the development of new drugs cannot progress from design to implementation, and ultimately to a cure. This unit will tackle important factors in drug design, and will highlight the current arsenal of methods used in the discovery of new drugs, including rational drug design, high throughput screening and combinatorial chemistry. We will develop a logical approach to planning a synthesis of a particular target structure. The synthesis and chemistry of heterocycles, which comprise some 40% of all known organic compounds and are particularly common in pharmaceuticals, will be outlined. Examples will include important ring systems present in biological systems, such as pyrimidines and purines (DNA and RNA), imidazole and thiazole (amino acids and vitamins) and porphyrins (natural colouring substances and oxygen carrying component of blood). Throughout the course, the utility of synthesis in medicinal chemistry will be illustrated with case studies such as anti-influenza (Relenza), anaesthetic (benzocaine), anti-inflammatory (Vioxx), antihypertensive (pinacidil) and cholesterol-lowering (Lovastatin) drugs.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
CHEM3915 Synthetic Medicinal Chemistry (Adv)
Credit points: 6 Session: Semester 2 Classes: Two 1-hour lectures per week, one 1-hour seminar per week, and two 4-hour practicals per week for half of semester. Prerequisites: [(65 or greater in (CHEM2401 or CHEM2911 or CHEM2915)) AND (65 or greater in (CHEM2402 or CHEM2912 or CHEM2916))] OR (65 or greater in (CHEM2521 or CHEM2921 or CHEM2991)) Prohibitions: CHEM3115 Assessment: Assignments, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
The development of new pharmaceuticals fundamentally relies on the ability to design and synthesize new compounds. Synthesis is an enabling discipline for medicinal chemistry - without it, the development of new drugs cannot progress from design to implementation, and ultimately to a cure. This unit will tackle important factors in drug design, and will highlight the current arsenal of methods used in the discovery of new drugs, including rational drug design, high throughput screening and combinatorial chemistry. We will develop a logical approach to planning a synthesis of a particular target structure. The synthesis and chemistry of heterocycles, which comprise some 40% of all known organic compounds and are particularly common in pharmaceuticals, will be outlined. Examples will include important ring systems present in biological systems, such as pyrimidines and purines (DNA and RNA), imidazole and thiazole (amino acids and vitamins) and porphyrins (natural colouring substances and oxygen carrying component of blood). Throughout the course, the utility of synthesis in medicinal chemistry will be illustrated with case studies such as anti-influenza (Relenza), anaesthetic (benzocaine), anti-inflammatory (Vioxx), antihypertensive (pinacidil) and cholesterol-lowering (Lovastatin) drugs. CHEM3915 students attend the same lectures as CHEM3115 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
Interdisciplinary Project
MCHM3888 Medicinal Chemistry Interdisciplinary Project
Credit points: 6 Teacher/Coordinator: A/Prof Matthew Todd Session: Semester 2 Classes: Lectures/tutorials/presentations: 2 x 1 hr per week for 13 weeks. Prerequisites: (CHEM2401 or CHEM2521 or CHEM2911 or CHEM2915 or CHEM2921 or CHEM2991) and [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and {BMED2402 or BMED2405})] Assessment: Component 1 - Discipline Project Written Report (10%) Component 2 - Proposal Report (30%) Component 2 - Proposal Presentation (10%) Component 3 - Interdisciplinary Report (30%) Component 3 - Interdisciplinary Presentation (10%)Teamwork participation and evaluation (10%) Mode of delivery: Normal (lecture/lab/tutorial) day
In this unit, you will adopt a multi-disciplinary approach to solve a real-world problem based around treating a disease relevant to our society, such as cancer, heart disease, infection or neurological conditions. You will apply your discipline expertise in medicinal chemistry to understand the challenge, then design potential solutions to the problem, and then work collaboratively with students in other disciplines (science, government, business, law, marketing, engineering) to consider solutions to the problem from a broader perspective and how these could positively impact on the community. This unit will allow you to understand the disease through stories of scientific endeavour that led to the discovery of first-generation drugs, then extend that knowledge through collecting and analysing data on new treatment solutions that can help you move towards designing innovative approaches. You will learn to work in interdisciplinary teams and communicate your findings to a broad audience. You will build key skills in problem solving, team work and written/oral communication that will equip you for many future research or professional pathways in one or more of: science, technology, health, business and public policy.
SCPU3001 Science Interdisciplinary Project
Credit points: 6 Teacher/Coordinator: Prof Pauline Ross Session: Intensive February,Intensive July,Semester 1,Semester 2 Classes: The unit consists of one seminar/workshop per week with accompanying online materials and a project to be determined in consultation with the partner organisation and completed as part of a team with academic supervision. Prerequisites: Completion of 2000-level units required for at least one Science major. Assessment: group plan, group presentation, reflective journal, group project Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed for students who are concurrently enrolled in at least one 3000-level Science Table A unit of study to undertake a project that allows them to work with one of the University's industry and community partners. Students will work in teams on a real-world problem provided by the partner. This experience will allow students to apply their academic skills and disciplinary knowledge to a real-world issue in an authentic and meaningful way. Participation in this unit will require students to submit an application to the Faculty of Science.
Minor Core
MCHM3001 From Molecules to Therapeutics
Credit points: 6 Teacher/Coordinator: A/Prof Margaret Sunde Session: Semester 1 Classes: lecture 2 hrs/week Prerequisites: [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402) or (BMED2401 and BMED2405)] or (12cp from BCMB2XXX) and [(CHEM2401 or CHEM2521 or CHEM2911 or CHEM2915 or CHEM2921 or CHEM2991)] Prohibitions: MCHM3901 Assessment: 2 x in-class test (10%), oral presentation (10%), 2 x group workshop (20%), lab report (20%), final exam (40%) Practical field work: Workshops and labs up to 4hr/week for 12 wks Mode of delivery: Normal (lecture/lab/tutorial) day
Major changes to the way we discover and develop new medicines have taken place in recent years. Sequencing of the human genome has revolutionised drug target identification and therapeutic design. Approaches that combine molecular biology and intensive data analysis are key to the development of effective personalised and precision therapies. New methods in organic synthesis have accelerated how we explore chemical space and parallel developments in nanotechnology are driving innovative drug delivery methods. Improvements in cell, tissue and animal models of human disease are changing how drugs are identified and tested. In this unit, you will explore how these new ideas and technologies are transforming medicinal chemistry. You will learn and apply such techniques to the molecular-level understanding of diseases and the design of effective therapeutics. You will learn the procedures leading to drug registration and regulation. You will participate in enquiry-led practicals that reinforce the concepts of the unit and develop your skills in cutting-edge methods used in modern medicinal chemistry. By studying this unit you will build knowledge and skills that will enable you to play a role in creating therapeutics that will impact lives.
MCHM3901 From Molecules to Therapeutics (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Margaret Sunde Session: Semester 1 Classes: Lecture 2 hrs/week.
Students in the Advanced unit of study will work in smaller groups and tackle alternative higher-level tasks in workshops and labs that broaden and extend their knowledge and expertise. Prerequisites: A mark of 70 or above in each of [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402) or (BMED2401 and BMED2405) or in each unit of (12cp from BCMB2XXX)] AND a mark of 70 or above in [(CHEM2401 or CHEM2521 or CHEM2911 or CHEM2915 or CHEM2921 or CHEM2991)] Prohibitions: MCHM3001 Assessment: 2 x in-class test (10%), oral presentation (10%), 2 x group workshop (20%), lab report (20%), final exam (40%). Practical field work: workshops and labs up to 4hr/week for 12 wks. Students in the Advanced unit of study will work in smaller groups and tackle alternative higher-level tasks in workshops and labs that broaden and extend their knowledge and expertise. Mode of delivery: Normal (lecture/lab/tutorial) day
Major changes to the way we discover and develop new medicines have taken place in recent years. Sequencing of the human genome has revolutionised drug target identification and therapeutic design. Genomics approaches that combine molecular biology and intensive data analysis are key to the development of personalised and precision therapies. New methods in organic synthesis have accelerated how we explore chemical space, developments in nanotechnology are driving innovative drug delivery methods. In this unit you will explore how these new ideas and technologies transforming medicinal chemistry. You will learn and apply such techniques to the molecular-level understanding of diseases and the design of effective therapeutics. You will learn the procedures leading to drug registration and regulation. You will participate in enquiry-led practicals that reinforce the concepts of the unit and develop your skills in cutting-edge methods used in modern medicinal chemistry. By studying this unit you will build knowledge and skills that will enable you to play a role in creating therapeutics that will impact lives. You will learn and apply such techniques to the molecular-level understanding of diseases and the design of effective therapeutics. The advanced unit has the same overall concepts as the mainstream unit but the material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components, which may vary from year to year.
Minor selective
CHEM3110 Biomolecules: Properties and Reactions
Credit points: 6 Session: Semester 1 Classes: Two 1-hour lectures and two 4-hour practicals per week for half of semester Prerequisites: [(CHEM2401 or CHEM2911 or CHEM2915) AND (CHEM2402 or CHEM2912 or CHEM2916)] OR (CHEM2521 or CHEM2921 or CHEM2991) Prohibitions: CHEM3910 Assessment: Assignment, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
DNA, proteins and carbohydrates represent three classes of essential biomolecules present in all biological systems. This unit will cover the structure, reactivity and properties of biomolecules and the building blocks from which these molecules are assembled. Interactions between biomolecules and metalions, small molecules and other biomolecules will be covered and the chemical tools for studying biomolecules highlighted. The design and synthesis of small molecules which mimic the functions of biomolecules will also be illustrated.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
CHEM3910 Biomolecules: Properties and Reactions Adv
Credit points: 6 Session: Semester 1 Classes: Two 1-hour lectures per week, one 1-hour seminar per week, and two 4-hour practicals per week for half of semester. Prerequisites: [(65 or greater in (CHEM2401 or CHEM2911 or CHEM2915)) AND (65 or greater in (CHEM2402 or CHEM2912 or CHEM2916))] OR (65 or greater in (CHEM2521 or CHEM2921 or CHEM2991)) Prohibitions: CHEM3110 Assessment: Assignments, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
DNA, proteins and carbohydrates represent three classes of essential biomolecules present in all biological systems. This unit will cover the structure, reactivity and properties of biomolecules and the building blocks from which these molecules are assembled. Interactions between biomolecules and metal ions, small molecules and other biomolecules will be covered and the chemical tools for studying biomolecules highlighted. The design and synthesis of small molecules which mimic the functions of biomolecules will also be illustrated. CHEM3910 students attend the same lectures as CHEM3110 students but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
CHEM3115 Synthetic Medicinal Chemistry
Credit points: 6 Session: Semester 2 Classes: Two 1-hour lectures per week and two 4-hour practicals per week for half of semester. Prerequisites: [(CHEM2401 or CHEM2911 or CHEM2915) AND (CHEM2402 or CHEM2912 or CHEM2916)] OR (CHEM2521 or CHEM2921 or CHEM2991) Prohibitions: CHEM3915 Assessment: Assignment, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
The development of new pharmaceuticals fundamentally relies on the ability to design and synthesize new compounds. Synthesis is an enabling discipline for medicinal chemistry - without it, the development of new drugs cannot progress from design to implementation, and ultimately to a cure. This unit will tackle important factors in drug design, and will highlight the current arsenal of methods used in the discovery of new drugs, including rational drug design, high throughput screening and combinatorial chemistry. We will develop a logical approach to planning a synthesis of a particular target structure. The synthesis and chemistry of heterocycles, which comprise some 40% of all known organic compounds and are particularly common in pharmaceuticals, will be outlined. Examples will include important ring systems present in biological systems, such as pyrimidines and purines (DNA and RNA), imidazole and thiazole (amino acids and vitamins) and porphyrins (natural colouring substances and oxygen carrying component of blood). Throughout the course, the utility of synthesis in medicinal chemistry will be illustrated with case studies such as anti-influenza (Relenza), anaesthetic (benzocaine), anti-inflammatory (Vioxx), antihypertensive (pinacidil) and cholesterol-lowering (Lovastatin) drugs.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
CHEM3915 Synthetic Medicinal Chemistry (Adv)
Credit points: 6 Session: Semester 2 Classes: Two 1-hour lectures per week, one 1-hour seminar per week, and two 4-hour practicals per week for half of semester. Prerequisites: [(65 or greater in (CHEM2401 or CHEM2911 or CHEM2915)) AND (65 or greater in (CHEM2402 or CHEM2912 or CHEM2916))] OR (65 or greater in (CHEM2521 or CHEM2921 or CHEM2991)) Prohibitions: CHEM3115 Assessment: Assignments, prac reports and oral, final examination (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
The development of new pharmaceuticals fundamentally relies on the ability to design and synthesize new compounds. Synthesis is an enabling discipline for medicinal chemistry - without it, the development of new drugs cannot progress from design to implementation, and ultimately to a cure. This unit will tackle important factors in drug design, and will highlight the current arsenal of methods used in the discovery of new drugs, including rational drug design, high throughput screening and combinatorial chemistry. We will develop a logical approach to planning a synthesis of a particular target structure. The synthesis and chemistry of heterocycles, which comprise some 40% of all known organic compounds and are particularly common in pharmaceuticals, will be outlined. Examples will include important ring systems present in biological systems, such as pyrimidines and purines (DNA and RNA), imidazole and thiazole (amino acids and vitamins) and porphyrins (natural colouring substances and oxygen carrying component of blood). Throughout the course, the utility of synthesis in medicinal chemistry will be illustrated with case studies such as anti-influenza (Relenza), anaesthetic (benzocaine), anti-inflammatory (Vioxx), antihypertensive (pinacidil) and cholesterol-lowering (Lovastatin) drugs. CHEM3915 students attend the same lectures as CHEM3115 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.
Textbooks
See http://sydney.edu.au/science/chemistry/studying-chemistry/undergraduate/senior-chemistry.shtml
PCOL3012 Drug Design and Development
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX Prohibitions: PCOL3912 Assessment: One 2 hour exam, class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study is designed to introduce students with a basic understanding of pharmacology to the field of medicinal chemistry associated with drug design and development. The course covers the fundamental aspects of drug discovery and development with reference to the essentials of chemistry and illustrates drug development with examples that include neuraminidase inhibitors and angiotensin converting enzyme inhibitors. The role of computers in drug design is emphasised by classwork and assignments on molecular modelling and structure-activity relationships. The course also extends to a section on the design of diverse pharmacological agents which include compounds for imaging by positron emission tomography (PET), and kinase inhibitors.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.
PCOL3912 Drug Design and Development (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: a mark of 70 or above in {(PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX} Prohibitions: PCOL3012 Assessment: One 2 hour exam, in class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will consist of the lecture and practical components of PCOL3012. Students will be set special advanced assignments related to the material covered in core areas. These may also involve advanced practical work or detailed investigation of a theoretical problem.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.