Table 1: Immunobiology
Unit outlines will be available though Find a unit outline two weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.
Errata
Item |
Errata |
Date |
1. |
Prerequisites have changed for the following units. They now read:
BCMB3002 Protein Function and Engineering Prerequisites: 6 credit points from (BCMB2X02 or BCHM2X71) and 6 credit points from (BCHM2X72 or BCMB2X01 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or MEDS2003 or PCOL2X21 or QBIO2001)
BCMB3902 Protein Function and Engineering (Advanced) Prerequisites: An average mark of 75 or above in [6 credit points from (BCMB2X02 or BCHM2X71) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or MEDS2003 or PCOL2X21 or QBIO2001)]
|
10/02/2020 |
2. |
Prerequisites for the following unit have been re-worded to clarify the requirements. They now read:
PHSI3910 Reproduction, Development and Disease Adv Prerequisities: A mark of 70 or above in {6cp from (PHSI2X07 or MEDS2001) or 12cp from [(PHSI2X05 and PHSI2X06) or (BCMB2X02 or BIOL2X29 or GEGE2X01) or (BMED2402 or BMED2403 or BMED2406)]}
|
10/02/2020 |
3. |
Prerequisites for the following units have been re-worded to clarify the requirements. They now read:
PHSI3909 Frontiers in Cellular Physiology Adv Prerequisites: A mark of 70 or above in {6cp from (PHSI2X07 or MEDS2001) or 12cp from [(PHSI2X05 and PHSI2X06) or (BMED2402 or BMED2403 or BMED2406)]}
|
10/02/2020 |
Unit of study |
Credit points |
A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition |
Session |
Immunobiology
|
For a major in Immunobiology, the minimum requirement is 24 credit points comprising: |
(i) IMMU3102/3902 Cellular and Molecular Immunology and IMMU3202/3903 Immunology in Human Disease; and |
(ii) a minimum of 12 credit points from the following senior elective units of study: AMED3001/AMED3901, AMED3002, AMED3003/AMED3903, AMED3888, BCMB3001/3901, BCMB3002/3902, BCMB3003/3903, BIOL3018/3918, BIOL3026/3926, CPAT3X01, CPAT3X02, MICR3011/3911, PHSI3009/3909, PHSI3010/3910, VIRO3001/3901, VIRO3002/3902 |
Intermediate units of study
|
IMMU2011 Immunobiology |
6 |
A CHEM1XX1 or CHEM1903 P BIOL1XX7 or (BIOL1XX8 or BIOL1XX3 or MEDS1X01) or BIOL1XX2 or MBLG1XX1 N IMMU2911
|
Semester 1
|
IMMU2911 Immunobiology (Advanced) |
6 |
A CHEM1XX1 or CHEM1903 P A mark of 70 or above in [BIOL1XX7 or (BIOL1XX8 or BIOL1XX3 or MEDS1X01) or BIOL1XX2 or MBLG1XX1] N IMMU2011
|
Semester 1
|
MIMI2002 Microbes, Infection and Immunity |
6 |
A Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) P (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3) N MEDS2004 or BMED2404 or MIMI2902 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808
|
Semester 2
|
MIMI2902 Microbes, Infection and Immunity (Advanced) |
6 |
A Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) P A mark of 70 or above in (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3) N MEDS2004 or BMED2404 or MIMI2002 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808
|
Semester 2
|
Senior core units of study
|
Students must complete both IMMU3102/3902 and IMMU3202/3903. |
IMMU3102 Molecular and Cellular Immunology |
6 |
P IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11 N IMMU3902
|
Semester 1
|
IMMU3902 Molecular and Cellular Immunology (Advanced) |
6 |
P A mark of 70 or above in (IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11) N IMMU3102
|
Semester 1
|
IMMU3202 Immunology in Human Disease |
6 |
P IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11 N IMMU3903
|
Semester 2
|
IMMU3903 Immunology in Human Disease (Advanced) |
6 |
P A mark of 70 or above in (IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11) N IMMU3202
|
Semester 2
|
Senior elective units of study
|
AMED3001 Cancer |
6 |
P 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] N AMED3901
|
Semester 1
|
AMED3901 Cancer (Advanced) |
6 |
P A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] N AMED3001
|
Semester 1
|
AMED3002 Interrogating Biomedical and Health Data |
6 |
A Exploratory data analysis, sampling, simple linear regression, t-tests, confidence intervals and chi-squared goodness of fit tests, familiar with basic coding, basic linear algebra.
|
Semester 1
|
AMED3003 Diagnostics and Biomarkers |
6 |
P 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] N AMED3903
|
Semester 2
|
AMED3903 Diagnostics and Biomarkers (Advanced) |
6 |
P A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] N AMED3003
|
Semester 2
|
AMED3888 Clinical Science |
6 |
P 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] N AMED3004
|
Semester 2
|
BCMB3001 Gene and Genome Regulation |
6 |
A Intermediate biochemistry and molecular biology P 6 credit points from (BCMB2X01 or BMED2802 or MBLG2X01 or MEDS2003) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB2X02 or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2XXX or MEDS2002 or PCOL2X21 or QBIO2001) N BCHM3X71 or BCMB3901
|
Semester 1
|
BCMB3901 Gene and Genome Regulation (Advanced) |
6 |
A Intermediate Biochemistry (2000 level). P An average mark of 75 or above in [6 credit points from (BCMB2X01 or BMED2802 or MBLG2X01 or MEDS2003) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB2X02 or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2XXX or MEDS2002 or PCOL2X21 or QBIO2001)] N BCHM3X71 or BCMB3001
|
Semester 1
|
BCMB3002 Protein Function and Engineering |
6 |
A Intermediate biochemistry and molecular biology P 6 credit points from (BCMB2X02 or BCHM2X71) and 6 credit points from (BCHM2X72 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or PCOL2X21 or QBIO2001) N BCHM3X81 or BCMB3902
|
Semester 1
|
BCMB3902 Protein Function and Engineering (Advanced) |
6 |
A Intermediate Biochemistry (2000 level). P An average mark of 75 or above in [6 credit points from (BCMB2X02 or BCHM2X71) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or PCOL2X21 or QBIO2001)] N BCHM3X81 or BCMB3002
|
Semester 1
|
BCMB3003 Biochemistry of Human Disease |
6 |
A Intermediate protein chemistry and biochemistry concepts P 12 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) or [6 cp (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) and 6 credit points from (AMED3001 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 and BMED2405 or GEGE2X01 or MEDS2002 or PCOL2X21 or QBIO2001)] or 12 credit points from (BMED2401 and BMED2405) N BCMB3903 or (BCHM3X72 and BCHM3X82)
|
Semester 2
|
BCMB3903 Biochemistry of Human Disease (Advanced) |
6 |
A Students should understand basic concepts in human, mammalian, plant and/or prokaryotic biology. Students should have a basic understanding of the 'genome' and of the central dogma of molecular biology (gene transcription and protein translation). Additional knowledge of basic chemistry and protein biochemistry will be helpful. P An average mark of 75 or above in [12 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) or [6 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) and 6 credit points from (AMED3001 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 and BMED2405 or GEGE2X01 or MEDS2002 or PCOL2X21 or QBIO2001)] or 12 credit points from (BMED2401 and BMED2405)] N BCMB3003 or (BCHM3X72 and BCHM3X82)
|
Semester 2
|
BIOL3018 Gene Technology and Genomics |
6 |
P (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX or MEDS2003) N BIOL3918
|
Semester 1
|
BIOL3918 Gene Technology and Genomics (Adv) |
6 |
P A mark of 75 or above in (GEGE2X01 or MBLG2X72 or GENE2002) and a mark of 75 or above in (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX or MEDS2003) N BIOL3018
|
Semester 1
|
BIOL3026 Developmental Biology |
6 |
P (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX) N BIOL3926
|
Semester 1
|
BIOL3926 Developmental Biology (Advanced) |
6 |
P An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX)] N BIOL3929 or BIOL3026
|
Semester 1
|
CPAT3201 Pathogenesis of Human Disease 1 |
6 |
A Sound knowledge of biology through meeting pre-requisites P 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [(BCHM2071 or BCHM2971) or (BCHM2072 or BCHM2972)] or [(BCMB2001 or BCMB2901) or (BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] N CPAT3901
|
Semester 1
|
CPAT3901 Pathogenesis of Human Disease 1 (Advanced) |
6 |
A A working knowledge of biology P A mark of 70 or above in 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [BCHM2071 or BCHM2971) or BCHM2072 or BCHM2972) or BCHM2081 or BCHM2981) or BCHM2082 or BCHM2982)] or [(BCMB2001 or BCMB2901) or BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] N CPAT3201
Note: Department permission required for enrolment
|
Semester 1
|
CPAT3202 Pathogenesis of Human Disease 2 |
6 |
A Sound knowledge of biology through meeting pre-requisites P 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [(BCHM2071 or BCHM2971) or (BCHM2072 or BCHM2972)] or [(BCMB2001 or BCMB2901) or (BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] C CPAT3201 N CPAT3901
|
Semester 2
|
CPAT3902 Pathogenesis of Human Disease 2 (Advanced) |
6 |
A A working knowledge of biology P A mark of 70 or above in 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [BCHM2071 or BCHM2971) or BCHM2072 or BCHM2972) or BCHM2081 or BCHM2981) or BCHM2082 or BCHM2982)] or [(BCMB2001 or BCMB2901) or BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] N CPAT3202
Note: Department permission required for enrolment
|
Semester 2
|
MICR3011 Microbes in Infection |
6 |
A MICR2X21 or MICR2024 or MICR2X31 P [6cp from (BIOL1XX7 or MBLGXXXX or GEGE2X01 or GENE2002) and 6cp from (MEDS2004 or MICR2X22 or MIMI2X02)] OR [BMED2401 and BMED2404] N MICR3911
|
Semester 1
|
MICR3911 Microbes in Infection (Advanced) |
6 |
A MICR2X21 or MICR2024 or MICR2X31 P [6cp from (BIOL1XX7 or MBLGXXXX or GEGE2X01 or GENE2002) and a mark of 70 or above in (MEDS2004 or MICR2X22 or MIMI2X02)] OR [BMED2401 and a mark of 70 or above in BMED2404] N MICR3011
|
Semester 1
|
PHSI3009 Frontiers in Cellular Physiology |
6 |
P (PHSI2X05 and PHSI2X06) or [(PHSI2X07 or MEDS2001) or [BMED2401 and an additional 12cp from (BMED2402 or BMED2403 or BMED2405 or BMED2406)] N PHSI3909
We strongly recommend that students take both (PHSI3009 or PHSI3909) and (PHSI3010 or PHSI3910) units of study concurrently
|
Semester 1
|
PHSI3909 Frontiers in Cellular Physiology (Adv) |
6 |
P A mark of 70 or above in {(PHSI2X05 and PHSI2X06) or (PHSI2X07 or MEDS2001) or [12cp from (BMED2402 or BMED2403 or BMED2406)]} N PHSI3009
We strongly recommend that students take both (PHSI3009 or PHSI3909) and (PHSI3010 or 3910) units of study concurrently.
|
Semester 1
|
PHSI3010 Reproduction, Development and Disease |
6 |
P (PHSI2X05 and PHSI2X06) or (PHSI2X07 or MEDS2001) or [BMED2401 and an additional 12cp from (BMED2402 or BMED2403 or BMED2405 or BMED2406)] or [12cp from (BCMB2X02 or BIOL2X29 or GEGE2X01)] N PHSI3910
|
Semester 1
|
PHSI3910 Reproduction, Development and Disease Adv |
6 |
P A mark of 70 or above in {(PHSI2X05 and PHSI2X06) or (PHSI2X07 or MEDS2001) or [12cp from (BCMB2X02 or BIOL2X29 or GEGE2X01)] or [12cp from (BMED2402 or BMED2403 or BMED2406)]} N PHSI3010
|
Semester 1
|
VIRO3001 Virology |
6 |
A Fundamental concepts of microorganisms, biomolecules and ecosystems P [6cp from (BIOL1XX7 or MBLGXXXX) and 6cp from (BCHM2XXX or BCMB2X01 or BIOL2XXX or GEGE2X01 or GENE2002 or IMMU2101 or MEDS2004 or MICR2XXX or MIMI2X02 or PCOL2X0X or PHSI2X0X)] OR [BMED2401 and BMED2404] N VIRO3901
Students are strongly advised to complete VIRO3001 or VIRO3901 before enrolling in VIRO3002 or VIRO3902.
|
Semester 1
|
VIRO3901 Virology (Advanced) |
6 |
A Fundamental concepts of microorganisms, biomolecules and ecosystems P [6cp from (BIOL1XX7 or MBLGXXXX) and a mark of 70 or above in 6cp from (BCHM2XXX or BCMB2X01 or BIOL2XXX or GEGE2X01 or GENE2002 or IMMU2101 or MEDS2004 or MICR2XXX or MIMI2X02 or PCOL2X0X or PHSI2X0X)] OR [BMED2401 and a mark of 70 or above in BMED2404] N VIRO3001
Students are strongly advised to complete VIRO3001 or VIRO3901 before enrolling in VIRO3002 or VIRO3902.
|
Semester 1
|
VIRO3002 Medical and Applied Virology |
6 |
A Fundamental concepts of microorganisms and biomolecules P 6cp from (BMED2404 or IMMU2101 or MEDS2004 or MIMI2X02 or MICR2X22) N VIRO3902
|
Semester 2
|
VIRO3902 Medical and Applied Virology (Advanced) |
6 |
A Fundamental concepts of microorganisms and biomolecules P A mark of 70 or above in 6cp from (BMED2404 or IMMU2101 or MEDS2004 or MIMI2X02 or MICR2X22) N VIRO3002
|
Semester 2
|
Immunobiology
For a major in Immunobiology, the minimum requirement is 24 credit points comprising:
(i) IMMU3102/3902 Cellular and Molecular Immunology and IMMU3202/3903 Immunology in Human Disease; and
(ii) a minimum of 12 credit points from the following senior elective units of study: AMED3001/AMED3901, AMED3002, AMED3003/AMED3903, AMED3888, BCMB3001/3901, BCMB3002/3902, BCMB3003/3903, BIOL3018/3918, BIOL3026/3926, CPAT3X01, CPAT3X02, MICR3011/3911, PHSI3009/3909, PHSI3010/3910, VIRO3001/3901, VIRO3002/3902
Intermediate units of study
IMMU2011 Immunobiology
Credit points: 6 Teacher/Coordinator: Dr Umaimainthan Palendira Session: Semester 1,Semester 1 Classes: Online lecturettes, weekly Interactive lectures, fortnightly Workshops and Practicals. ~4-5h face-to-face per week Prerequisites: BIOL1XX7 or (BIOL1XX8 or BIOL1XX3 or MEDS1X01) or BIOL1XX2 or MBLG1XX1 Prohibitions: IMMU2911 Assumed knowledge: CHEM1XX1 or CHEM1903 Assessment: Online quizzes (15%), practical reports (30%), title and abstract task (15%) and final exam (40%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Immunobiology is the study of defence mechanisms that protect living organisms against life-threatening infections. In this unit of study you will explore the essential features of the host immune responses mounted by animals, both vertebrates and invertebrates, plants and microbes themselves. Studies in animal and microbial immunobiology are leading to breakthroughs in veterinary and clinical medicine, including combatting infectious diseases, maximising transplant success, treating allergies, autoimmune diseases and cancer, as well as the development of new vaccines to prevent disease. Understanding the immunobiology of plants also enables us to protect crops from disease which enhances our food security. In this unit of study you will be provided with an overview of immunobiology as a basic research science. We will explore the nature of the immune cells and molecules that recognise danger and how the immune system of animals and plants respond at the cellular and molecular level. Practical and tutorial sessions are designed to illustrate particular concepts introduced in other face-to-face activities. Further self-directed learning activities, including online learning activities, will facilitate integration of fundamental information and help you apply this knowledge to the ways in which the host organism defends against disease. Upon completion, you will have developed the foundations to undertake further studies in Biology, Animal Health, Immunology and Pathology. Ultimately, this could lead you to a career in medical research, biosecurity and/or Veterinary Science.
Textbooks
Abbas, Lichtman and Pillai (2016) Basic Immunology: Functions and Disorders of The Immune System, 5th Edition
IMMU2911 Immunobiology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Umaimainthan Palendira Session: Semester 1,Semester 1 Classes: Online lecturettes, weekly Interactive lectures, fortnightly Workshops and Practicals . ~4-5h face-to-face per week Prerequisites: A mark of 70 or above in [BIOL1XX7 or (BIOL1XX8 or BIOL1XX3 or MEDS1X01) or BIOL1XX2 or MBLG1XX1] Prohibitions: IMMU2011 Assumed knowledge: CHEM1XX1 or CHEM1903 Assessment: Online quizzes (20%), practical reports (15%), journal article comprehension task (5%), title and abstract written task (10%) and final exam (50%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Immunobiology is the study of defence mechanisms that protect living organisms against life-threatening infections. In this unit of study you will explore the essential features of the host immune responses and how it evolved from unicellular organisms to complex multi-cellular organisms. Studies in animal and microbial immunobiology are leading to breakthroughs in veterinary and clinical medicine, including combatting infectious diseases, maximising transplant success, treating allergies, autoimmune diseases and cancer, as well as development of new vaccines to prevent disease. Understanding the immunobiology of plants also enables us to protect crops from disease which enhances our food security. In this unit of study you will be provided with a detailed overview of immunobiology as a basic research science. We will explore in detail the nature of the immune cells and molecules that recognise danger and how the immune system of animals and plants respond at the cellular and molecular level. Advanced practical and tutorial sessions are designed to illustrate particular concepts introduced in other face-to-face activities. Further self-directed learning activities, including online learning activities, will facilitate integration of fundamental information and help you apply this knowledge to the ways in which the host organism defends against disease. This advanced version of Immunobiology has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest lectures from experts. The nature of these components may vary from year to year.
Textbooks
Abbas, Lichtman and Pillai (2016) Basic Immunology: Functions and Disorders of The Immune System, 5th Edition
MIMI2002 Microbes, Infection and Immunity
Credit points: 6 Teacher/Coordinator: Dr Leona Campbell Session: Semester 2,Semester 2 Classes: Lectures, online mini-lectures, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry-, and scenario-based workshops (5 hours per week for 13 weeks). Prerequisites: (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3) Prohibitions: MEDS2004 or BMED2404 or MIMI2902 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808 Assumed knowledge: Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) Assessment: final examination (40%), mid-semester examination (10%), practical exercises (20%), online activities (20%), integrated assessment (10%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Transmission, pathogenicity and immune response to microbes are key concepts for understanding infectious disease processes. In this unit of study you will establish a conceptual foundation and, using an integrated approach, explore selected case studies of infection from a body system of origin perspective. You will explore the characteristics of viral, bacterial, fungal and protist pathogens and their virulence mechanisms for establishment and progression of disease. Comprehensive consideration of host immune response and characteristic pathological changes to tissue that arise will then be considered. Upon completion of this unit, you will be able to explain microbial pathogenic processes of infection including: mechanisms for colonisation, invasion and damage to host tissue; the ways in which your immune system recognises and destroys invading microbes; how T cell response is activated and antibodies function. You will learn about pathogenesis, symptoms, current challenges of treatment including antibiotic resistance, control and vaccination strategies. You will develop a holistic perspective of infectious diseases. You will work collaboratively to solve challenging problems in Biomedical Sciences. Practical classes will investigate normal flora, host defences and case studies of medically important microbes with linkage to disease outcome. You will also obtain experience and understanding of modern experimental techniques in microbiology and immunopathology.
MIMI2902 Microbes, Infection and Immunity (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Leona Campbell Session: Semester 2,Semester 2 Classes: Lectures, online lecturettes, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry- and scenario-based workshops (5 hours per week for 13 weeks). Prerequisites: A mark of 70 or above in (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3) Prohibitions: MEDS2004 or BMED2404 or MIMI2002 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808 Assumed knowledge: Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) Assessment: final examination (40%), mid-semester examination (10%), practical exercises (20%), formative online activities, research publication-based activities (20%), integrated assessment (10%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Transmission, pathogenicity and immune response to microbes are key concepts for understanding infectious disease processes. In this unit you will establish a conceptual foundation and, using an integrated approach, explore selected infection case studies from a body system of origin perspective. You will explore characteristics of viral, bacterial, fungal and protist pathogens and their virulence mechanisms for establishment and progression of disease. Comprehensive consideration of host immune response and consequent characteristic pathological changes to tissue will be considered. Upon completion, you will be able to explain microbial pathogenic processes of infection including: mechanisms for colonisation, invasion and damage to host tissue; the ways your immune system recognises and destroys invading microbes; how T cell response is activated and antibodies function. You will learn about pathogenesis, symptoms, current challenges of treatment including antibiotic resistance, control and vaccination strategies. This advanced unit has the same overall structure as MIMI2002 but contains a unique science communication exercise in which you will actively participate in small group sessions and be assessed with a short essay. This advanced component explores how recent advances in microbiology, infection and immunity are communicated to the wider public and is based on recent publications with potential high impact for society.
Senior core units of study
Students must complete both IMMU3102/3902 and IMMU3202/3903.
IMMU3102 Molecular and Cellular Immunology
Credit points: 6 Teacher/Coordinator: A/Prof Carl Feng Session: Semester 1,Semester 1 Classes: Three lectures (1 hour each) will be given each fortnight: 2 lectures in one week and one lecture the following week. Two hour tutorials will run weeks 2 to 7 and four hour practical will run from week 8 to 13. Prerequisites: IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11 Prohibitions: IMMU3902 Assessment: Formal examination (one 2 hour exam) and Progressive assessment including written, practical and oral based assessments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This study unit builds on the series of lectures that outlined the general properties of the immune system, effector lymphocytes and their functions, delivered in the core courses, IMMU2101 - Introductory Immunology and BMED2404 - Microbes, Infection and Immunity (formerly IMMU2001 and BMED2807). In this unit the molecular and cellular aspects of the immune system are investigated in detail. We emphasise fundamental concepts to provide a scientific basis for studies of the coordinated and regulated immune responses that lead to elimination of infectious organisms. Guest lectures from research scientists eminent in particular branches of immunological research are a special feature of the course. These provide challenging information from the forefront of research that will enable the student to become aware of the many components that come under the broad heading 'Immunology'.
Textbooks
Abbas, AK, Lichtman, AH and Pillai, S. Cellular and Molecular Immunology 8th edition. 2015. Elsevier.
IMMU3902 Molecular and Cellular Immunology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Carl Feng Session: Semester 1,Semester 1 Classes: Three lectures (1 hour each) will be given each fortnight: 2 lectures in one week and one lecture the following week. Two hour tutorials will run weeks 2 to 7 and Four hour practical will run from week 8 to 13. Prerequisites: A mark of 70 or above in (IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11) Prohibitions: IMMU3102 Assessment: Formal examination (one 2 hour exam) and Progressive assessment including written, practical and oral based assessments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is available to students who have performed well in Introductory Immunology (IMMU2101). Advanced students will complete the same core lecture material as students in IMMU3102 but attend a series of specialized seminar and research based tutorial classes.
Textbooks
Textbooks Abbas, AK, Lichtman, AH and Pillai, S. Cellular and Molecular Immunology 8th edition. 2015. Elsevier.
IMMU3202 Immunology in Human Disease
Credit points: 6 Teacher/Coordinator: A/Prof Allison Abendroth Session: Semester 2,Semester 2 Classes: Three 1 hour lectures, one tutorial and one 4 hour practical per fortnight. Prerequisites: IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11 Prohibitions: IMMU3903 Assessment: Formal examination (one 2 hour exam) and Progressive assessment including written, practical and oral based assessments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This study unit builds on the series of lectures that outlined the general properties of the immune system, effector lymphocytes and their functions, delivered in the core courses, IMMU2101 - Introductory Immunology and BMED2404 - Microbes, Infection and Immunity (formerly IMMU2001 and BMED2807). We emphasise fundamental concepts to provide a scientific basis for studies in clinical immunology; dysfunctions of the immune system e.g. autoimmune disease, immunodeficiencies, and allergy, and immunity in terms of host - pathogen interactions. This unit has a strong focus on significant clinical problems in immunology and the scientific background to these problems. The unit includes lectures from research scientists and clinicians covering areas such as allergy, immunodeficiency, autoimmune disease and transplantation. This course provides challenging information from the forefront of clinical immunology and helps the student develop an understanding of immune responses in human health and disease. Three lectures (1 hour each) will be given each fortnight: 2 lectures in one week and one lecture the following week, for the duration of the course. This unit directly complements the unit 'Molecular and Cellular Immunology IMMU3102' and students are very strongly advised to undertake these study units concurrently.
Textbooks
Abbas, AK, Lichtman, AH and Pillai, S. Cellular and Molecular Immunology 8th edition. 2015. Elsevier
IMMU3903 Immunology in Human Disease (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Allison Abendroth Session: Semester 2,Semester 2 Classes: 3 lectures,1 seminar/tutorial (2 hours) and1 practical (4 hours) every 2 weeks. Prerequisites: A mark of 70 or above in (IMMU2101 or BMED2404 or MEDS2004 or MIMI2X02 or IMMU2X11) Prohibitions: IMMU3202 Assessment: Formal examination (one 2 hour exam) and Progressive assessment including written, practical and oral based assessments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is available to students who have performed well in Introductory Immunology (IMMU2101). Advanced students will complete the same core lecture material as students in IMMU3202 but carry out advanced level practical work and a series of specialized seminar based tutorial classes.
Textbooks
Abbas, AK, Lichtman, AH and Pillai, S. Cellular and Molecular Immunology 8th edition. 2015. Elsevier
Senior elective units of study
AMED3001 Cancer
Credit points: 6 Teacher/Coordinator: A/Prof Geraldine O'Neill Session: Semester 1,Semester 1 Classes: interactive face to face activities 4 hrs/week; online 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3901 Assessment: Exam, assignments, quiz, presentation Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: "you have cancer"? Initially you're probably consumed with questions like: "how did this happen?" and "will this cancer kill me?". In this unit, we will explore all aspects of the "cancer problem" from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire the skills to interpret and communicate observations and experimental findings related to the "cancer problem" to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system.
Textbooks
Recommended Textbook: 1.,Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1.,Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2.,Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3901 Cancer (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Geraldine O'Neill Session: Semester 1,Semester 1 Classes: interactive face to face activities 4 hrs/week; online 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3001 Assessment: Multimedia creation (20%), quizzes and participation in workshops (10%), Cancer Case study presentation (30%), journal-style practical report (20%), in-semester exam (20%) Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: you have cancer? Initially you're probably consumed with questions like: how did this happen? and will this cancer kill me? In this unit, we will explore all aspects of the cancer problem from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire advanced skills to interpret and communicate observations and experimental findings related to the cancer problem to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system. This advanced version of Cancer has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest appearances from leading cancer experts. The nature of these components may vary from year to year.
Textbooks
Recommended Textbook: 1., Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1., Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2., Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3002 Interrogating Biomedical and Health Data
Credit points: 6 Teacher/Coordinator: Dr Ellis Patrick Session: Semester 1,Semester 1 Classes: face to face 5 hrs/week; online 2 hrs/week; individual and/or group work 3-6 hrs/week Assumed knowledge: Exploratory data analysis, sampling, simple linear regression, t-tests, confidence intervals and chi-squared goodness of fit tests, familiar with basic coding, basic linear algebra. Assessment: Exam, assignments, quiz, presentation Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Biotechnological advances have given rise to an explosion of original and shared public data relevant to human health. These data, including the monitoring of expression levels for thousands of genes and proteins simultaneously, together with multiple databases on biological systems, now promise exciting, ground-breaking discoveries in complex diseases. Critical to these discoveries will be our ability to unravel and extract information from these data. In this unit, you will develop analytical skills required to work with data obtained in the medical and diagnostic sciences. You will explore clinical data using powerful, state of the art methods and tools. Using real data sets, you will be guided in the application of modern data science techniques to interrogate, analyse and represent the data, both graphically and numerically. By analysing your own real data, as well as that from large public resources you will learn and apply the methods needed to find information on the relationship between genes and disease. Leveraging expertise from multiple sources by working in team-based collaborative learning environments, you will develop knowledge and skills that will enable you to play an active role in finding meaningful solutions to difficult problems, creating an important impact on our lives.
AMED3003 Diagnostics and Biomarkers
Credit points: 6 Teacher/Coordinator: A/Prof Fabienne Brilot-Turville Session: Semester 2,Semester 2 Classes: interactive face to face 4 hrs/week; online activities 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3903 Assessment: Exam, assignments, quiz, presentation Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of, a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop your understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.
AMED3903 Diagnostics and Biomarkers (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Fabienne Brilot-Turville Session: Semester 2,Semester 2 Classes: Interactive face to face 4 hrs/week; online activities 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3003 Assessment: in-semester exam (30%), advanced skill-based practical assessments (30%), oral presentation (20%), communication piece (20%), formative online quizzes Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop an advanced understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.
AMED3888 Clinical Science
Credit points: 6 Teacher/Coordinator: Dr Wendy Gold Session: Semester 2,Semester 2 Classes: interactive face to face 4 hrs/week; online activities 2 hrs/week; individual and/or group work 3-6 hrs/week; capstone experience (6 hrs) Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3004 Assessment: Interdisciplinary creation (30%), written assignment on interdisciplinary project (25%), in-semester exam (30%), practical assessment (10%), capstone oral presentation (5%) Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Clinical science is a multidisciplinary science that combines the principles of experimental science with translational medicine. As a clinical scientist, you will have the capacity to interpret test results, isolate causes of disease, and ultimately develop new treatments that will save lives. Clinical Science will provide you with the breadth and depth of knowledge and skills that will give you a broad foundation of knowledge and open up a range of career opportunities in clinical sciences, including medical research, pharmaceutical development and clinical diagnostics. You will learn the language of the clinical world as you develop expertise in literature searching, study design, data interrogation and interpretation, evidence-based decision-making, and current knowledge in medical research. You will explore how discoveries in the medical sciences are translated into clinical practice, and pose your own clinical questions for investigation. You will study important medical conditions from the areas of infectious and genetic diseases and immunity. As part of the interdisciplinary capstone experience of your study in Clinical Science you will be emersed into clinical sectors of the hospital and associated departments . Consequently, at the end of this unit you will have experienced what it is like to work in interdisciplinary clinical teams, which is essential for both professional and research pathways in the future.
BCMB3001 Gene and Genome Regulation
Credit points: 6 Teacher/Coordinator: Dr Tara Christie Session: Semester 1,Semester 1 Classes: lecture 2h/week, lab 6h/fortnight for 12 weeks Prerequisites: 6 credit points from (BCMB2X01 or BMED2802 or MBLG2X01 or MEDS2003) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB2X02 or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2XXX or MEDS2002 or PCOL2X21 or QBIO2001) Prohibitions: BCHM3X71 or BCMB3901 Assumed knowledge: Intermediate biochemistry and molecular biology Assessment: 3 x laboratory reports (6% each), online quiz (2%), 1000-wd formal report (10%), presentation (5%), 6 x in-semester quizzes (2% each), final exam (53%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Virtually every cell in your body contains the same DNA, but each one of your cell types uses a distinct subset of genes to define its function throughout its lifetime at every step along its developmental pathway. This unit of study will lead you to appreciate the mechanisms by which cells switch on or switch off genes at different times, in different places and in response to different signals. You will discover how our cells walk the fine line between repairing genetic damage and generating genetic diversity. You will also explore how manipulation of the genome through natural or targeted mutation can contribute to, prevent or treat disease. Our practicals, together with other guided and online learning sessions will introduce you to a wide range of currently utilised techniques for modern molecular biology, ranging from laboratory-based experiments to bioinformatics, in silico and virtual reality studies. By the end of this unit you will be equipped with senior level skills and knowledge to support your studies and careers in the cellular and molecular biosciences.
BCMB3901 Gene and Genome Regulation (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Tara Christie Session: Semester 1,Semester 1 Classes: lecture 2h/week, lab 6h/fortnight for 12 weeks Prerequisites: An average mark of 75 or above in [6 credit points from (BCMB2X01 or BMED2802 or MBLG2X01 or MEDS2003) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB2X02 or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2XXX or MEDS2002 or PCOL2X21 or QBIO2001)] Prohibitions: BCHM3X71 or BCMB3001 Assumed knowledge: Intermediate Biochemistry (2000 level). Assessment: 3 x laboratory reports (6% each), online quiz (2%), 1000-wd formal report (10%), presentation (5%), 6 x in-semester quizzes (2% each), final exam (53%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Virtually every cell in your body contains the same DNA, but each one of your cell types uses a distinct subset of genes to define its function throughout its lifetime at every step along its developmental pathway. This unit of study will lead you to appreciate the mechanisms by which cells switch on or switch off genes at different times, in different places and in response to different signals. You will discover how our cells walk the fine line between repairing genetic damage and generating genetic diversity. You will also explore how manipulation of the genome through natural or targeted mutation can contribute to, prevent or treat disease. Our practicals, together with other guided and online learning sessions will introduce you to a wide range of currently utilised techniques for modern molecular biology, ranging from laboratory-based experiments to bioinformatics, in silico and virtual reality studies. By the end of this unit you will be equipped with senior level skills and knowledge to support your studies and careers in the cellular and molecular biosciences. Gene and Genome Regulation (Advanced) has the same overall structure and lecture content as BCMB3001 but the material is discussed in greater detail and at a more advanced level. Students enrolled in BCMB3901 participate in a partially varied practical and tutorial program that focuses on developing skills in experimental design, critical thinking, data analysis and communication.
BCMB3002 Protein Function and Engineering
Credit points: 6 Teacher/Coordinator: Prof Jacqui Matthews Session: Semester 1,Semester 1 Classes: lecture 2 h/week, lab 6 h/fortnight for 12 weeks Prerequisites: 6 credit points from (BCMB2X02 or BCHM2X71) and 6 credit points from (BCHM2X72 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or PCOL2X21 or QBIO2001) Prohibitions: BCHM3X81 or BCMB3902 Assumed knowledge: Intermediate biochemistry and molecular biology Assessment: 1000-wd lab report (10%), 2 x in-semester quizzes (theory; 5% each), skills-based task (theory of practical component; 10%), 4 x 400-wd short lab report (10%), group presentation and individual report (10%), final exam (50%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Proteins are the major doing molecules in biology. Their molecular make-up gives them a much more diverse set of properties than any other biological or synthetic polymer, leading to a vast array of different structures and functions. In this unit of study, you will learn about the structure, dynamics and interactions of proteins, and how those properties influence their myriad roles in nature. You will discover how these complex molecules are thought to have evolved, how they are made and dismantled, how they fold, and drive key processes inside and outside cells. You will also explore how the properties of proteins can be modulated by other molecules, or engineered to develop proteins with new functions or properties for use in biotechnology, medicine, bioremediation and industry. Our practicals, other guided and online learning sessions will introduce you to a wide range of currently utilised techniques for protein biochemistry ranging from protein visualization, quantification, purification and enzymatic activity, to in silico and virtual reality studies. By the end of this unit you will be equipped with senior level skills and knowledge to support your studies and careers in the cellular and molecular biosciences.
BCMB3902 Protein Function and Engineering (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Jacqui Matthews Session: Semester 1,Semester 1 Classes: lecture 2 h/week, lab 6 h/fortnight for 12 weeks, 2-4 additional tutorial/online discussion groups throughout the semester Prerequisites: An average mark of 75 or above in [6 credit points from (BCMB2X02 or BCHM2X71) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or PCOL2X21 or QBIO2001)] Prohibitions: BCHM3X81 or BCMB3002 Assumed knowledge: Intermediate Biochemistry (2000 level). Assessment: 1000-wd lab report (10%), 2 x in-semester quizzes (theory; 5% each), skills-based task (theory of practical component; 10%), 4 x 400-wd short lab report (10%), group presentation and individual report (10%), final exam (50%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Proteins are the major doing molecules in biology. Their molecular make-up gives them a much more diverse set of properties than any other biological or synthetic polymer, leading to a vast array of different structures and functions. In this unit of study, you will learn about the structure, dynamics and interactions of proteins, and how those properties influence their myriad roles in nature. You will discover how these complex molecules are thought to have evolved, how they are made and dismantled, how they fold, and drive key processes inside and outside cells. You will also explore how the properties of proteins can be modulated by other molecules, or engineered to develop proteins with new functions or properties for use in biotechnology, medicine, bioremediation and industry. Our practicals, other guided and online learning sessions will introduce you to a wide range of currently utilised techniques for protein biochemistry ranging from protein visualization, quantification, purification and enzymatic activity, to in silico and virtual reality studies. By the end of this unit you will be equipped with senior level skills and knowledge to support your studies and careers in the cellular and molecular biosciences. Protein Function and Engineering (Advanced) has the same overall structure as BCMB3002 but the material is discussed in greater detail and at a more advanced level. Students enrolled in BCMB3902 participate in a partially varied practical and tutorial program that focuses on developing skills in experimental design, critical thinking, data analysis and communication.
BCMB3003 Biochemistry of Human Disease
Credit points: 6 Teacher/Coordinator: Dr Markus Hofer Session: Semester 2,Semester 2 Classes: lectures 2 hrs/week, practical 3 hrs/fortnight (up to 7 practicals in total per student) Prerequisites: 12 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) or [6 cp (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) and 6 credit points from (AMED3001 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 and BMED2405 or GEGE2X01 or MEDS2002 or PCOL2X21 or QBIO2001)] or 12 credit points from (BMED2401 and BMED2405) Prohibitions: BCMB3903 or (BCHM3X72 and BCHM3X82) Assumed knowledge: Intermediate protein chemistry and biochemistry concepts Assessment: 2 x 200-wd lab book report (5% each), scientific paper (15%), in-class quiz (20%), final exam (55%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Diseases are ultimately the result of an imbalance of cellular function. Causes for such dysfunction are diverse and include mutations of our DNA, altered gene expression and external stimuli such as infection. This unit will investigate how defects in key cell functions including gene expression, signalling, biomolecular interactions and metabolic processes lead to diseases. The molecular causes and biochemical processes that underlie cancer, aging and neurodegeneration will be used to illustrate the relationships between these processes and how our understanding of these commonalities is allowing us to solve complex health problems. Associations to other diseases will be integrated into the course to give a broader understanding of how key biochemical processes are linked to a wide range of disorders. In the practicals you will use experimental approaches to study cell proliferation and death, protein misfolding, the hallmarks of cancer and some neurodegenerative diseases. By the end of this unit you will have gained foundational skills and knowledge that will support further studies and careers in the life and medical sciences.
BCMB3903 Biochemistry of Human Disease (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Markus Hofer Session: Semester 2,Semester 2 Classes: lectures 2 hrs/week, practical 3 hours per fortnight (up to 7 practicals in total per student) , four one-hour seminars, one poster session to present poster Prerequisites: An average mark of 75 or above in [12 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) or [6 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MEDS2003 or MBLG2X01) and 6 credit points from (AMED3001 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 and BMED2405 or GEGE2X01 or MEDS2002 or PCOL2X21 or QBIO2001)] or 12 credit points from (BMED2401 and BMED2405)] Prohibitions: BCMB3003 or (BCHM3X72 and BCHM3X82) Assumed knowledge: Students should understand basic concepts in human, mammalian, plant and/or prokaryotic biology. Students should have a basic understanding of the 'genome' and of the central dogma of molecular biology (gene transcription and protein translation). Additional knowledge of basic chemistry and protein biochemistry will be helpful. Assessment: 2 x 200-wd lab book report (3% each), poster design and presentation (7%), 400-wd written report (6%), 400-wd short essay (6%), in class quiz (20%), final exam (55%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Diseases are ultimately the result of an imbalance of cellular function. Causes for such dysfunction are diverse and include mutations of our DNA, altered gene expression and external stimuli such as infection. This unit will investigate how defects in key cell functions including gene expression, signalling, biomolecular interactions and metabolic processes lead to diseases. The molecular causes and biochemical processes that underlie cancer, aging and neurodegeneration will be used to illustrate the relationships between these processes and how our understanding of these commonalities is allowing us to solve complex health problems. Associations to other diseases will be integrated into the course to give a broader understanding of how key biochemical processes are linked to a wide range of disorders. In the practicals you will use experimental approaches to study cell proliferation and death, protein misfolding, the hallmarks of cancer and some neurodegenerative diseases. By the end of this unit you will have gained foundational skills and knowledge that will support further studies and careers in the life and medical sciences. The lecture component of this advanced unit will be the same as for the mainstream unit BCMB3003. In the practicals you will investigate similar concepts, however, the experiments are designed to cover a wider range of techniques, and you will analyse the results in more depth. You will present scientific findings in a poster session to academics from the School of Life and Environmental Sciences (SOLES). In addition, to relate the course content to current research and application, you will attend a series of four research seminars relating to the lecture content that will be given by experts in their field.
BIOL3018 Gene Technology and Genomics
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1,Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX or MEDS2003) Prohibitions: BIOL3918 Assessment: One 2-hour exam (60%), assignments (40%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the regulation, impact and implications of genetic engineering and genomics. Topics include biological sequence data and databases, comparative genomics, the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines, new diagnostic techniques for human and veterinary disease, and the genetic engineering of animals and plants. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and bioinformatics, immunological detection of proteins, and the genetic transformation and assay of plants.
BIOL3918 Gene Technology and Genomics (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1,Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: A mark of 75 or above in (GEGE2X01 or MBLG2X72 or GENE2002) and a mark of 75 or above in (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX or MEDS2003) Prohibitions: BIOL3018 Assessment: One 2-hour exam (60%), assignments (40%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of BIOL3018 Gene Technology and Genomics. The content and nature of these components may vary from year to year.
BIOL3026 Developmental Biology
Credit points: 6 Teacher/Coordinator: A/Professor Mary Byrne Session: Semester 1 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX) Prohibitions: BIOL3926 Assessment: One 2-hour exam, assignments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
The advent of multicellularity represents one of life's great transitions in complexity, ultimately paving the way to the evolution of complex organisms such as humans. This unit focuses on how such complex multicellular systems are constructed using both animal and plant systems in a comparative way that reveals common strategies and striking contrasts. The course will cover the multidisciplinary nature of approaches used, including classical embryology, biochemistry, genetics, transcriptomics, live-imaging, cell biology, physiology and computer simulation. Topics will include fundamental concepts, morphogens, establishing body axes, cell polarity, differentiation and commitment, evolution in the context of development, mechanics and morphogenesis with examples from model systems, stem cells and cancer. Practical work complements the theoretical aspects of the course and develops important skills in developmental biology.
BIOL3926 Developmental Biology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Professor Mary Byrne Session: Semester 1 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX)] Prohibitions: BIOL3929 or BIOL3026 Assessment: One 2-hour exam, assignments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components to BIOL3026 Developmental Biology. The content and nature of these components may vary from year to year. Some assessment will be in an alternative format to components of BIOL3026.
CPAT3201 Pathogenesis of Human Disease 1
Credit points: 6 Teacher/Coordinator: A/Prof Paul Witting Session: Semester 1,Semester 1 Classes: Three 1-hour lectures and one 3-hour research tutorial per week. Prerequisites: 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [(BCHM2071 or BCHM2971) or (BCHM2072 or BCHM2972)] or [(BCMB2001 or BCMB2901) or (BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] Prohibitions: CPAT3901 Assumed knowledge: Sound knowledge of biology through meeting pre-requisites Assessment: One 2-hour exam (60%), one major research essay (1500w) (20%), two 0.5-hour in-semester exams (20%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
The Pathogenesis of Human Disease 1 unit of study modules will provide a theoretical background to the scientific basis of the pathogenesis of disease. Areas covered in theoretical modules include: tissue responses to exogenous factors, adaptive responses to foreign agents, cardiovascular/pulmonary/gut responses to disease, forensic science, neuropathology and cancer. The aims of the course are: - To give students an overall understanding of the fundamental biological mechanisms governing disease pathogenesis in human beings. - To introduce to students basic concepts of the pathogenesis, natural history and complications of common human diseases. - To demonstrate and exemplify differences between normality and disease. - To explain cellular aspects of certain pathological processes. Together with CPAT3202, the unit of study would be appropriate for those who intend to proceed to Honours research, to postgraduate studies such as Medicine or to careers in biomedical areas such as hospital science. Enquires should be directed to anthea.matsimanis@sydney.edu.au
Textbooks
Kumar, Abbas and Aster. Robbins Basic Pathology, 9th edition. Saunders. 2012.
CPAT3901 Pathogenesis of Human Disease 1 (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Paul Witting Session: Semester 1,Semester 1 Classes: Lectures (2 h/wk) and online lecturettes (3 x 20 min/wk); group focus tutorial (3 x 2 h over 2-3 weeks); guided museum session (1 h/wk); and preparation of online research notebooks (1 h/wk). Prerequisites: A mark of 70 or above in 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [BCHM2071 or BCHM2971) or BCHM2072 or BCHM2972) or BCHM2081 or BCHM2981) or BCHM2082 or BCHM2982)] or [(BCMB2001 or BCMB2901) or BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] Prohibitions: CPAT3201 Assumed knowledge: A working knowledge of biology Assessment: Week 2 in-semester quiz 1 - 5% (12 MCQ)?Museum tour and report (module 1) - 5%Week 6 in-semester quiz 2 - 5% (12 MCQ)Museum tour and report (module 2) - 5%Week 8 in-semester quiz 3 - 5% (12 MCQ)Museum tour and report (module 3) - 5%Week 9 in-semester quiz 4 - 5% (12 MCQ)Museum tour and report (module 4) - 5% Week 10-12 Group focus learning module that precedes assignment of the pathogenesis essays to each group; students will then work in small groups to build short oral presentations (5 min) on the assigned topics. These presentations will be delivered within the groups and in the presence of a content expert that will provide feed back together with group feed back for each presentation. This will be a formative task.Week 13 Pathogenesis report - 20%Exam period final exam (40%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Block mode
Note: Department permission required for enrolment
A deep understanding of pathological mechanisms for disease progression leads to improved human health outcomes. As human populations across the world are ageing, the increasing burden of age-related disease will become one of the greatest challenges facing modern medical science. To equip students with skills appropriate for job-ready careers in the biomedical sciences specialising in pathology it is necessary to provide an integrated understanding of how to evaluate and analyse crucial pathological mechanisms governing disease progression in humans. You will participate in inquiry-led learning modules focused on the systems theory of disease and the underlying mechanisms that promote disease progression in humans. To demonstrate disease you will review high-resolution imagery of pathological specimens using innovative online tools combined with in-depth description of immunological, molecular and biochemical process that underpin the pathogenesis of disease in a range of major body organs. You will undertake investigations to gain an advanced understanding of the health complications of common human diseases. You will learn to use a process of high-level deduction to identify key differences between normality and disease in order to explain cellular aspects of certain pathological processes. Through undertaking this unit you will develop the necessary skill set to define and strategically assess how different organ systems react to injury/insult and how to apply basic concepts of disease processes, which ultimately improve the capacity to manage and intervene in fundamental and clinical aspects of health and disease.
Textbooks
All resources will be made available through the Canvas LMS UoS site and the Pathology museum website. Robbins Basic Pathology; 9th Edition, Eds Kumar, Abbas, Fausto and Mitchell
CPAT3202 Pathogenesis of Human Disease 2
Credit points: 6 Teacher/Coordinator: Dr Melanie White Session: Semester 2,Semester 2 Classes: Practical Module Prerequisites: 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [(BCHM2071 or BCHM2971) or (BCHM2072 or BCHM2972)] or [(BCMB2001 or BCMB2901) or (BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] Corequisites: CPAT3201 Prohibitions: CPAT3901 Assumed knowledge: Sound knowledge of biology through meeting pre-requisites Assessment: One 2-hour exam (60%), Museum Practical Reports (40%). Practical field work: One 1.5-hour microscopic practical or one 1-hour museum practical per week (alternating). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
The Pathogenesis of Human Disease 2 unit of study modules will provide a practical background to the scientific basis of the pathogenesis of disease. Areas covered in practical modules include disease specimen evaluation on a macroscopic and microscopic basis. The aims of the course are: - To enable students to gain an understanding of how different organ systems react to injury and to apply basic concepts of disease processes. - To equip students with skills appropriate for careers in the biomedical sciences and for further training in research or professional degrees. At the end of the course students will: - Have acquired practical skills in the use of a light microscope. - Have an understanding of basic investigative techniques for disease detection in pathology. - Be able to evaluate diseased tissue at the macroscopic and microscopic level. - Have the ability to describe, synthesise and present information on disease pathogenesis. - Transfer problem-solving skills to novel situations related to disease pathogenesis. This unit of study would be appropriate for those who intend to proceed to Honours research, to postgraduate studies such as Medicine or to careers in biomedical areas such as hospital science. Enquiries should be directed to anthea.matsimanis@sydney.edu.au.
Textbooks
Kumar, Abbas and Aster. Robbins Basic Pathology, 9th edition. Saunders. 2012.
CPAT3902 Pathogenesis of Human Disease 2 (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Melanie White Session: Semester 2,Semester 2 Classes: lectures (2 h/wk); microscopy tutorial (1.5 h); guided museum session (1 h/wk); and group focus tutorial (1.5 h/wk) Prerequisites: A mark of 70 or above in 12cp from {[ANAT2008 or ANAT2009 or (ANAT2010 or ANAT2910) or ANAT2011] or [BCHM2071 or BCHM2971) or BCHM2072 or BCHM2972) or BCHM2081 or BCHM2981) or BCHM2082 or BCHM2982)] or [(BCMB2001 or BCMB2901) or BCMB2002 or BCMB2902)] or [(BIOL2021 or BIOL2921) or (BIOL2022 or BIOL2922) or (BIOL2024 or BIOL2924) or (BIOL2030 or BIOL2930) or (BIOL2031 or BIOL2931)] or [(GEGE2001 or GEGE2901)] or [(IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or MICR2031 or MICR2931 or MIMI2002 or MIMI2902)] or [(MBLG2071 or MBLG2971) or (MBLG2072 or MBLG2972)] or [(PCOL2011 or PCOL2021) or (PCOL2012 or PCOL2022)] or [(PHSI2005 or PHSI2905) or (PHSI2006 or PHSI2906) or (PHSI2007 or PHSI2907) or [PHSI2008 or PHSI2908)] or [(BMED2403 and BMED2404)]} or [MEDS2004 and 6cp from (MEDS2001 or MEDS2002 or MEDS2003 or MEDS2005)] Prohibitions: CPAT3202 Assumed knowledge: A working knowledge of biology Assessment: Week 2 pre-quiz 1 - 5% (10 MCQ)?Week 4 pre-quiz 2 - 5% (10 MCQ)Week 6 Electronic notebook 1 - 10% (Narrative Plan document that is to be populated with data obtained by the student)?Week 8 pre-quiz 3 - 5% (10 MCQ)Week 10 pre-quiz 4 - 5% (10 MCQ)Week 12 Electronic notebook 1 - 10% (Narrative Plan document that is to be populated with data obtained by the student)?Week 13 or 14 Practical exam - 20% (Specimen and micrograph-based practical exam) followed by final exam (40%). Practical field work: One 1.5-hour microscopic practical or one 1-hour museum practical per week (alternating) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Understanding the underlying mechanisms of disease and disease progression, improving human health and addressing the impact of human activity on individual health outcomes are some of the great challenges facing modern medical sciences in the 21st century. To equip students with skills appropriate for careers in the biomedical sciences and for further training in research or professional degrees it is necessary to provide an integrated understanding of how to evaluate and analyse crucial pathological mechanisms governing disease progression in humans. You will participate in inquiry-led museum and practical class sessions that review human pathological specimens using innovative online tools combined with high-resolution microscopy to crystallise and reinforce concepts developed in the unit. You will undertake investigations to gain an advanced understanding of the pathogenesis, natural history and related health complications of common human diseases. You will learn to use methodologies to exemplify key differences between normality and disease in order to explain cellular aspects of certain pathological processes. Through undertaking this unit you will develop the necessary practical skills required to employ advanced imaging technologies that are increasingly used to define and strategically assess how different organ systems react to injury/insult, which ultimately improve the capacity to manage and intervene in fundamental and clinical aspects of health and disease.
Textbooks
All resources will be made available through the Canvas LMS UoS site; through electronic notebooks and the Pathology museum website. Robbins Basic Pathology; 9th Edition, Eds Kumar, Abbas, Fausto and Mitchell
MICR3011 Microbes in Infection
Credit points: 6 Teacher/Coordinator: A/Prof Helen Agus Session: Semester 1,Semester 1 Classes: Two 1-hour lectures per week. Eight 3-hour practical sessions and three 2-hour clinical tutorials per semester Prerequisites: [6cp from (BIOL1XX7 or MBLGXXXX or GEGE2X01 or GENE2002) and 6cp from (MEDS2004 or MICR2X22 or MIMI2X02)] OR [BMED2401 and BMED2404] Prohibitions: MICR3911 Assumed knowledge: MICR2X21 or MICR2024 or MICR2X31 Assessment: Theory (60%): One 2-hour exam; Practical (40%): case study: worksheet, lab work, presentation; one quiz; one 1-hour theory of prac exam Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed to further develop an interest in, and understanding of, medical microbiology from the introduction in Intermediate Microbiology. Through an examination of microbial structure, virulence, body defences and pathogenesis, the process of acquisition and establishment of disease is covered. The unit is divided into three themes: 1. Clinical Microbiology: host defences, infections, virulence mechanisms; 2. Public health microbiology: epidemiology, international public health, transmission, water and food borne outbreaks; 3. Emerging and re-emerging diseases: the impact of societal change with respect to triggering new diseases and causing the re-emergence of past problems, which are illustrated using case studies. The practical component is designed to enhance students' practical skills and to complement the lecture series. In these practical sessions experience will be gained handling live, potentially pathogenic microbes. Clinical tutorial sessions underpin and investigate the application of the material covered in the practical classes.
Textbooks
Murray PR et al. Medical Microbiology. 8th edition. Mosby. 2016.
MICR3911 Microbes in Infection (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Helen Agus Session: Semester 1,Semester 1 Classes: Two 1-hour lectures per week including six 1-hour advanced sessions. Eight 3-hour practical sessions and three 2-hour clinical tutorials per semester Prerequisites: [6cp from (BIOL1XX7 or MBLGXXXX or GEGE2X01 or GENE2002) and a mark of 70 or above in (MEDS2004 or MICR2X22 or MIMI2X02)] OR [BMED2401 and a mark of 70 or above in BMED2404] Prohibitions: MICR3011 Assumed knowledge: MICR2X21 or MICR2024 or MICR2X31 Assessment: Theory: One 1.5-hour exam (45%), one essay (15%); Practical: case study worksheet (3%), case study lab work (7%), case study presentation (5%), quiz (10%), one 1-hour theory of prac exam (15%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is available to students who have performed well in Intermediate Microbiology. This unit is designed to further develop an interest in, and understanding of, medical microbiology from the introduction in Intermediate Microbiology. Through an examination of microbial structure, virulence, body defences and pathogenesis, the process of acquisition and establishment of disease is covered. The unit is divided into three themes: 1. Clinical Microbiology: host defences, infections, virulence mechanisms; 2. Public health microbiology: epidemiology, international public health, transmission, water and food borne outbreaks; 3. Emerging and re-emerging diseases: the impact of societal change with respect to triggering new diseases and causing the re-emergence of past problems, which are illustrated using case studies. The unique aspect of this advanced unit that differentiates it from the mainstream unit is six tutorial style sessions that replace six mainstream lectures in the theme 'Emerging and re-emerging diseases'. These dedicated research-led interactive advanced sessions support self-directed learning and involve discussion around specific topics that will vary from year to year. Nominated research papers and reviews in the topic area will be explored with supported discussion of the relevance to and impact of the work on current thinking around emergence of microbial disease. The focus will be on microbial change that lies critically at the centre of understanding the reasons for the emergence of new diseases and challenges in an era of significant scientific ability to diagnose and treat infection. The practical component is identical to the mainstream unit and is designed to enhance students' practical skills and to complement the lectures. In these practical sessions experience will be gained handling live, potentially pathogenic microbes. Clinical tutorial sessions underpin and investigate the application of the material covered in the practical classes.
Textbooks
Murray PR.et al. Medical Microbiology. 8th ed., Mosby, 2016
PHSI3009 Frontiers in Cellular Physiology
Credit points: 6 Teacher/Coordinator: Prof David Cook Session: Semester 1,Semester 1 Classes: 2 x 1 hr/week lectures, 3 x 3 hr practical class sessions per semester, 4 x 2 hr Challenge Based Learning (CBL) tutorials per semester, 2 x 1 hr literature-based research project tutorials per semester Prerequisites: (PHSI2X05 and PHSI2X06) or [(PHSI2X07 or MEDS2001) or [BMED2401 and an additional 12cp from (BMED2402 or BMED2403 or BMED2405 or BMED2406)] Prohibitions: PHSI3909 Assessment: mid-semester exam (MCQ) (15%), 2hr final exam (MCQ) (40%), presentation for challenge-based learning (15%), practical class report (15%), report on a literature based project (15%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: We strongly recommend that students take both (PHSI3009 or PHSI3909) and (PHSI3010 or PHSI3910) units of study concurrently
Everything that happens in our bodies is the result of the actions of cells. In this Unit of Study, you will have the opportunity to: Build on your existing understanding of the cellular and molecular basis of how our bodies work, explore what goes wrong if key cell types do not work as expected and learn about the exciting new techniques and paradigms that allow us to link events at the level of the body to the activity of single cells. This unit will help you develop a strong framework for future study and employment in medicine and health.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
PHSI3909 Frontiers in Cellular Physiology (Adv)
Credit points: 6 Teacher/Coordinator: Prof David Cook Session: Semester 1,Semester 1 Classes: 2 x 1 hr/week lectures, 3 x 3 hr practical class sessions per semester, 4 x 2 hr Challenge Based Learning (CBL) tutorials per semester Prerequisites: A mark of 70 or above in {(PHSI2X05 and PHSI2X06) or (PHSI2X07 or MEDS2001) or [12cp from (BMED2402 or BMED2403 or BMED2406)]} Prohibitions: PHSI3009 Assessment: mid-semester exam (MCQ) (15%), 2hr final exam (MCQ) (40%), presentation for challenge-based learning (15%), Advanced project (30%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: We strongly recommend that students take both (PHSI3009 or PHSI3909) and (PHSI3010 or 3910) units of study concurrently.
Everything that happens in our bodies is the result of the actions of cells. In this Unit of Study, you will have the opportunity to: Build on your existing understanding of the cellular and molecular basis of how our bodies work, explore what goes wrong if key cell types do not work as expected and learn about the exciting new techniques and paradigms that allow us to link events at the level of the body to the activity of single cells. This unit will help you develop a strong framework for future study and employment in medicine and health.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
PHSI3010 Reproduction, Development and Disease
Credit points: 6 Teacher/Coordinator: A/Prof Stephen Assinder Session: Semester 1,Semester 1 Classes: 2 x 1 hr/week lectures and 6 x 2 hr large class tutorials (CBL) per semester, practical or library project Prerequisites: (PHSI2X05 and PHSI2X06) or (PHSI2X07 or MEDS2001) or [BMED2401 and an additional 12cp from (BMED2402 or BMED2403 or BMED2405 or BMED2406)] or [12cp from (BCMB2X02 or BIOL2X29 or GEGE2X01)] Prohibitions: PHSI3910 Assessment: one mid-semester MCQ exam, one 2hr final exam, two problem-solving learning tutorials, 3 practical class reports Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
The aim of this unit is to provide students with advanced knowledge of the physiological processes that regulate normal and how these may go awry leading to significant human conditions or even disease. Lectures will focus on; male and female reproductive physiology, endocrinology of reproduction, physiology of fertilisation, cell cycle control and apoptosis, mechanisms of differentiation, gastrulation, cardiovascular development, tissue formation and organogenesis, stem cell biology and the link between developmental processes and cancer. Problem-based learning will focus on reproductive physiology and re-activation of developmental processes in adult disease. Practical classes will examine the processes regulating reproductive physiology, sexual dimorphism and human pathophysiology.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
PHSI3910 Reproduction, Development and Disease Adv
Credit points: 6 Teacher/Coordinator: A/Prof Stephen Assinder Session: Semester 1,Semester 1 Classes: 2 x 1 hr/week lectures and 6 x 2 hr large class tutorials (CBL) per semester, practical or library project Prerequisites: A mark of 70 or above in {(PHSI2X05 and PHSI2X06) or (PHSI2X07 or MEDS2001) or [12cp from (BCMB2X02 or BIOL2X29 or GEGE2X01)] or [12cp from (BMED2402 or BMED2403 or BMED2406)]} Prohibitions: PHSI3010 Assessment: one mid-semester MCQ exam, one 2hr final exam,stem cell laboratory class (2 presentations), 3 practical class reports Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
The aim of this unit is to provide students with advanced knowledge of the physiological processes that regulate normal and how these may go awry leading to significant human conditions or even disease. Lectures will focus on; male and female reproductive physiology, endocrinology of reproduction, physiology of fertilisation, cell cycle control and apoptosis, mechanisms of differentiation, gastrulation, cardiovascular development, tissue formation and organogenesis, stem cell biology and the link between developmental processes and cancer. Practical classes will examine the processes regulating reproductive physiology, sexual dimorphism and human pathophysiology. Students enrolling in PHSI3910 complete a separate laboratory class centered on stem cell differentiation to replace the problem-based learning exercises in PHSI3010.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
VIRO3001 Virology
Credit points: 6 Teacher/Coordinator: A/Prof Tim Newsome Session: Semester 1,Semester 1 Classes: 26 1-hour lectures, seven 4-hour practical classes, one 2-hour tutorial Prerequisites: [6cp from (BIOL1XX7 or MBLGXXXX) and 6cp from (BCHM2XXX or BCMB2X01 or BIOL2XXX or GEGE2X01 or GENE2002 or IMMU2101 or MEDS2004 or MICR2XXX or MIMI2X02 or PCOL2X0X or PHSI2X0X)] OR [BMED2401 and BMED2404] Prohibitions: VIRO3901 Assumed knowledge: Fundamental concepts of microorganisms, biomolecules and ecosystems Assessment: preparation assessment for practical classes: (5 x 1%), practical assessment for practical classes: (5 x 2%), presentation on virology-themed research literature: (10%), theory of practical exam: (15%) (30 minutes), theory exam: (60%) (120 minutes) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students are strongly advised to complete VIRO3001 or VIRO3901 before enrolling in VIRO3002 or VIRO3902.
Viruses are some of the simplest biological machinery known yet they are also the etiological agents for some of the most important human diseases. New technologies that have revolutionised the discovery of viruses are also revealing a hitherto unappreciated abundance and diversity in the ecosphere, and a wider role in human health and disease. Developing new gene technologies have enabled the use of viruses as therapeutic agents, in novel vaccine approaches, gene delivery and in the treatment of cancer. This unit of study is designed to introduce students who have a basic understanding of molecular biology to the rapidly evolving field of virology. Viral infection in plant and animal cells and bacteria is covered by an examination of virus structure, genomes, gene expression and replication. Building upon these foundations, this unit progresses to examine host-virus interactions, pathogenesis, cell injury, the immune response and the prevention and control of infection and outbreaks. The structure and replication of sub-viral agents: viroids and prions, and their role in disease are also covered. The practical component provides hands-on experience in current diagnostic and research techniques such as molecular biology, cell culture, serological techniques, immunofluorescence and immunoblot analyses and is designed to enhance the students' practical skills and complement the lecture series. In these practical sessions experience will be gained handling live, potentially pathogenic microbes. Tutorials cover a range of topical issues and provide a forum for students to develop their communication and critical thinking skills. The unit will be taught by the Discipline of Microbiology within the School of Life and Environmental Sciences with the involvement of the Discipline of Infectious Diseases and Immunology within the Sydney Medical School.
Textbooks
Knipe and Howley. Fields Virology. 6th edition 2013. Available freely as an electronic resource from the University of Sydney library.
VIRO3901 Virology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Tim Newsome Session: Semester 1,Semester 1 Classes: 29 1-hour lectures, seven 4-hour practical classes, four 1-hour tutorials Prerequisites: [6cp from (BIOL1XX7 or MBLGXXXX) and a mark of 70 or above in 6cp from (BCHM2XXX or BCMB2X01 or BIOL2XXX or GEGE2X01 or GENE2002 or IMMU2101 or MEDS2004 or MICR2XXX or MIMI2X02 or PCOL2X0X or PHSI2X0X)] OR [BMED2401 and a mark of 70 or above in BMED2404] Prohibitions: VIRO3001 Assumed knowledge: Fundamental concepts of microorganisms, biomolecules and ecosystems Assessment: preparation assessment for practical classes: (5 x 1%), practical assessment for practical classes: (5 x 2%), presentation on virology-themed research literature: (10%), theory of practical exam: (15%) (30 minutes), theory exam (60%) (120 minutes) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students are strongly advised to complete VIRO3001 or VIRO3901 before enrolling in VIRO3002 or VIRO3902.
This unit is available to students who have performed well in Intermediate Microbiology and is based on VIRO3001 with additional lectures related to the research interests in the Discipline. Consequently, the unit of study content may change from year to year. Viruses are some of the simplest biological machinery known yet they are also the etiological agents for some of the most important human diseases. New technologies that have revolutionised the discovery of viruses are also revealing a hitherto unappreciated abundance and diversity in the ecosphere, and a wider role in human health and disease. Developing new gene technologies have enabled the use of viruses as therapeutic agents, in novel vaccine approaches, gene delivery and in the treatment of cancer. This unit of study is designed to introduce students who have a basic understanding of molecular biology to the rapidly evolving field of virology. Viral infection in plant and animal cells and bacteria is covered by an examination of virus structure, genomes, gene expression and replication. Building upon these foundations, this unit progresses to examine host-virus interactions, pathogenesis, cell injury, the immune response and the prevention and control of infection and outbreaks. The structure and replication of sub-viral agents: viroids and prions, and their role in disease are also covered. The practical component provides hands-on experience in current diagnostic and research techniques such as molecular biology, cell culture, serological techniques, immunofluroescence and immunoblot analyses and is designed to enhance the students' practical skills and complement the lecture series. In these practical sessions experience will be gained handling live, potentially pathogenic microbes. Advanced lectures cover cutting-edge research in the field of virology in small group discussions and presentations that provide a forum for students to develop their communication and critical thinking skills. The unit will be taught by the Discipline of Microbiology within the School of Life and Environmental Sciences with the involvement of the Discipline of Infectious Diseases and Immunology within the Sydney Medical School.
Textbooks
Knipe and Howley. Fields Virology. 6th edition 2013. Available freely as an electronic resource from the University of Sydney library.
VIRO3002 Medical and Applied Virology
Credit points: 6 Teacher/Coordinator: A/Prof Barry Slobedman Session: Semester 2,Semester 2 Classes: Two 1-hour lectures per week Prerequisites: 6cp from (BMED2404 or IMMU2101 or MEDS2004 or MIMI2X02 or MICR2X22) Prohibitions: VIRO3902 Assumed knowledge: Fundamental concepts of microorganisms and biomolecules Assessment: One 2-hour exam covering lecture material, one 2-hour theory of practical exam, written assignment and oral presentation (100%) Practical field work: One 4 hour practical session per week, in most weeks of semester. Practical session slots are also used for oral presentations. Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study explores diseases in human caused by viruses, with focus on the way viruses infect individual patients and spread in the community, and how virus infections are diagnosed, treated and/or prevented. Host/Virus interactions will also be described with a focus on the viral mechanisms that have evolved to combat and/or evade host defence systems. These features will be used to explain the symptoms, spread and control of the most medically important viruses that cause serious disease in humans. The unit will be taught by the Discipline of Infectious Diseases and Immunology within the Sydney Medical School with the involvement of associated clinical and research experts who will contribute lectures on their own special interests and with contributions from the Discipline of Microbiology. In the practical classes students will have the opportunity to develop their skills in performing methods currently used in diagnostic and research laboratories such as molecular analysis of viral genomes, immunofluorescent staining of viral antigens, cell culture and the culture of viruses.
Textbooks
Knipe and Howley. Fields Virology. 6th edition 2013. Available freely as an electronic resource from the University of Sydney library.
VIRO3902 Medical and Applied Virology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Barry Slobedman Session: Semester 2,Semester 2 Classes: Two 1 hour lectures per week, and one interactive 2-hour tutorials (approx 6 in total, including for oral presentations) Prerequisites: A mark of 70 or above in 6cp from (BMED2404 or IMMU2101 or MEDS2004 or MIMI2X02 or MICR2X22) Prohibitions: VIRO3002 Assumed knowledge: Fundamental concepts of microorganisms and biomolecules Assessment: One 2-hour exam covering lecture material, one 2-hour theory of practical exam, written assignment, oral presentation and tutorial participation (100%) Practical field work: One 4 hour practical session per week, in most weeks of semester. Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is based on the VIRO3002 course with inclusion of tutorials, including with leading research medical virologists, enabling students to gain additional experience with cutting edge virology research. The content of this unit may change from year to year based on research interests within the department.
Textbooks
Knipe and Howley. Fields Virology. 6th edition 2013. Available freely as an electronic resource from the University of Sydney library.