University of Sydney Handbooks - 2020 Archive

Download full 2020 archivePage archived at: Tue, 27 Oct 2020

Table 1: Applied Medical Science

Unit outlines will be available though Find a unit outline two weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.
 

Errata
Item Errata Date
1.

Sessions have changed for the following unit. S2CIAU Intensive August session is closed. A new S2CISE Intensive September session has been opened.

AMED4101 Research Skills and Processes

18/06/2020

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Applied Medical Science

For a major in Applied Medical Science, the minimum requirement is 24 credit points from any AMED Senior units of study.
Intermediate units of study
MIMI2002
Microbes, Infection and Immunity
6    A Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903)
P (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3)
N MEDS2004 or BMED2404 or MIMI2902 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808
Semester 2
MIMI2902
Microbes, Infection and Immunity (Advanced)
6    A Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903)
P A mark of 70 or above in (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3)
N MEDS2004 or BMED2404 or MIMI2002 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808
Semester 2
Senior units of study
AMED3001
Cancer
6    P 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)]
N AMED3901
Semester 1
AMED3901
Cancer (Advanced)
6    P A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)]
N AMED3001
Semester 1
AMED3002
Interrogating Biomedical and Health Data
6    A Exploratory data analysis, sampling, simple linear regression, t-tests, confidence intervals and chi-squared goodness of fit tests, familiar with basic coding, basic linear algebra.
Semester 1
AMED3003
Diagnostics and Biomarkers
6    P 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)]
N AMED3903
Semester 2
AMED3903
Diagnostics and Biomarkers (Advanced)
6    P A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)]
N AMED3003
Semester 2
AMED3888
Clinical Science
6    P 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)]
N AMED3004
Semester 2
The following units of study will not run in 2019: AMED3901, AMED3903

Applied Medical Science

For a major in Applied Medical Science, the minimum requirement is 24 credit points from any AMED Senior units of study.
Intermediate units of study
MIMI2002 Microbes, Infection and Immunity

Credit points: 6 Teacher/Coordinator: Dr Leona Campbell Session: Semester 2 Classes: Lectures, online mini-lectures, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry-, and scenario-based workshops (5 hours per week for 13 weeks). Prerequisites: (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3) Prohibitions: MEDS2004 or BMED2404 or MIMI2902 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808 Assumed knowledge: Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) Assessment: final examination (40%), mid-semester examination (10%), practical exercises (20%), online activities (20%), integrated assessment (10%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Transmission, pathogenicity and immune response to microbes are key concepts for understanding infectious disease processes. In this unit of study you will establish a conceptual foundation and, using an integrated approach, explore selected case studies of infection from a body system of origin perspective. You will explore the characteristics of viral, bacterial, fungal and protist pathogens and their virulence mechanisms for establishment and progression of disease. Comprehensive consideration of host immune response and characteristic pathological changes to tissue that arise will then be considered. Upon completion of this unit, you will be able to explain microbial pathogenic processes of infection including: mechanisms for colonisation, invasion and damage to host tissue; the ways in which your immune system recognises and destroys invading microbes; how T cell response is activated and antibodies function. You will learn about pathogenesis, symptoms, current challenges of treatment including antibiotic resistance, control and vaccination strategies. You will develop a holistic perspective of infectious diseases. You will work collaboratively to solve challenging problems in Biomedical Sciences. Practical classes will investigate normal flora, host defences and case studies of medically important microbes with linkage to disease outcome. You will also obtain experience and understanding of modern experimental techniques in microbiology and immunopathology.
MIMI2902 Microbes, Infection and Immunity (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Leona Campbell Session: Semester 2 Classes: Lectures, online lecturettes, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry- and scenario-based workshops (5 hours per week for 13 weeks). Prerequisites: A mark of 70 or above in (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3) Prohibitions: MEDS2004 or BMED2404 or MIMI2002 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808 Assumed knowledge: Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) Assessment: final examination (40%), mid-semester examination (10%), practical exercises (20%), formative online activities, research publication-based activities (20%), integrated assessment (10%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Transmission, pathogenicity and immune response to microbes are key concepts for understanding infectious disease processes. In this unit you will establish a conceptual foundation and, using an integrated approach, explore selected infection case studies from a body system of origin perspective. You will explore characteristics of viral, bacterial, fungal and protist pathogens and their virulence mechanisms for establishment and progression of disease. Comprehensive consideration of host immune response and consequent characteristic pathological changes to tissue will be considered. Upon completion, you will be able to explain microbial pathogenic processes of infection including: mechanisms for colonisation, invasion and damage to host tissue; the ways your immune system recognises and destroys invading microbes; how T cell response is activated and antibodies function. You will learn about pathogenesis, symptoms, current challenges of treatment including antibiotic resistance, control and vaccination strategies. This advanced unit has the same overall structure as MIMI2002 but contains a unique science communication exercise in which you will actively participate in small group sessions and be assessed with a short essay. This advanced component explores how recent advances in microbiology, infection and immunity are communicated to the wider public and is based on recent publications with potential high impact for society.
Senior units of study
AMED3001 Cancer

Credit points: 6 Teacher/Coordinator: A/Prof Geraldine O'Neill Session: Semester 1,Semester 1 Classes: interactive face to face activities 4 hrs/week; online 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3901 Assessment: Exam, assignments, quiz, presentation Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: "you have cancer"? Initially you're probably consumed with questions like: "how did this happen?" and "will this cancer kill me?". In this unit, we will explore all aspects of the "cancer problem" from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire the skills to interpret and communicate observations and experimental findings related to the "cancer problem" to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system.
Textbooks
Recommended Textbook: 1.,Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1.,Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2.,Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3901 Cancer (Advanced)

Credit points: 6 Teacher/Coordinator: A/Prof Geraldine O'Neill Session: Semester 1 Classes: interactive face to face activities 4 hrs/week; online 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3001 Assessment: Multimedia creation (20%), quizzes and participation in workshops (10%), Cancer Case study presentation (30%), journal-style practical report (20%), in-semester exam (20%) Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: you have cancer? Initially you're probably consumed with questions like: how did this happen? and will this cancer kill me? In this unit, we will explore all aspects of the cancer problem from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire advanced skills to interpret and communicate observations and experimental findings related to the cancer problem to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system. This advanced version of Cancer has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest appearances from leading cancer experts. The nature of these components may vary from year to year.
Textbooks
Recommended Textbook: 1., Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1., Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2., Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3002 Interrogating Biomedical and Health Data

Credit points: 6 Teacher/Coordinator: Dr Ellis Patrick Session: Semester 1 Classes: face to face 5 hrs/week; online 2 hrs/week; individual and/or group work 3-6 hrs/week Assumed knowledge: Exploratory data analysis, sampling, simple linear regression, t-tests, confidence intervals and chi-squared goodness of fit tests, familiar with basic coding, basic linear algebra. Assessment: Exam, assignments, quiz, presentation Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Biotechnological advances have given rise to an explosion of original and shared public data relevant to human health. These data, including the monitoring of expression levels for thousands of genes and proteins simultaneously, together with multiple databases on biological systems, now promise exciting, ground-breaking discoveries in complex diseases. Critical to these discoveries will be our ability to unravel and extract information from these data. In this unit, you will develop analytical skills required to work with data obtained in the medical and diagnostic sciences. You will explore clinical data using powerful, state of the art methods and tools. Using real data sets, you will be guided in the application of modern data science techniques to interrogate, analyse and represent the data, both graphically and numerically. By analysing your own real data, as well as that from large public resources you will learn and apply the methods needed to find information on the relationship between genes and disease. Leveraging expertise from multiple sources by working in team-based collaborative learning environments, you will develop knowledge and skills that will enable you to play an active role in finding meaningful solutions to difficult problems, creating an important impact on our lives.
AMED3003 Diagnostics and Biomarkers

Credit points: 6 Teacher/Coordinator: A/Prof Fabienne Brilot-Turville Session: Semester 2 Classes: interactive face to face 4 hrs/week; online activities 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3903 Assessment: Exam, assignments, quiz, presentation Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of, a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop your understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.
AMED3903 Diagnostics and Biomarkers (Advanced)

Credit points: 6 Teacher/Coordinator: A/Prof Fabienne Brilot-Turville Session: Semester 2 Classes: Interactive face to face 4 hrs/week; online activities 2 hrs/week; individual and/or group work 3-6 hrs/week Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3003 Assessment: in-semester exam (30%), advanced skill-based practical assessments (30%), oral presentation (20%), communication piece (20%), formative online quizzes Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop an advanced understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.
AMED3888 Clinical Science

Credit points: 6 Teacher/Coordinator: Dr Wendy Gold Session: Semester 2 Classes: interactive face to face 4 hrs/week; online activities 2 hrs/week; individual and/or group work 3-6 hrs/week; capstone experience (6 hrs) Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3004 Assessment: Interdisciplinary creation (30%), written assignment on interdisciplinary project (25%), in-semester exam (30%), practical assessment (10%), capstone oral presentation (5%) Campus: Westmead, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Clinical science is a multidisciplinary science that combines the principles of experimental science with translational medicine. As a clinical scientist, you will have the capacity to interpret test results, isolate causes of disease, and ultimately develop new treatments that will save lives. Clinical Science will provide you with the breadth and depth of knowledge and skills that will give you a broad foundation of knowledge and open up a range of career opportunities in clinical sciences, including medical research, pharmaceutical development and clinical diagnostics. You will learn the language of the clinical world as you develop expertise in literature searching, study design, data interrogation and interpretation, evidence-based decision-making, and current knowledge in medical research. You will explore how discoveries in the medical sciences are translated into clinical practice, and pose your own clinical questions for investigation. You will study important medical conditions from the areas of infectious and genetic diseases and immunity. As part of the interdisciplinary capstone experience of your study in Clinical Science you will be emersed into clinical sectors of the hospital and associated departments . Consequently, at the end of this unit you will have experienced what it is like to work in interdisciplinary clinical teams, which is essential for both professional and research pathways in the future.
The following units of study will not run in 2019: AMED3901, AMED3903