Biology
Errata
Item | Errata | Date |
---|---|---|
1. | ANAT2009 Comparative Primate Anatomy Assumed knowledge has been removed. Prerequisites have been added. They now read: 6 credit points from BIOL1XXX OR MEDS1X01 OR PSYC1XXX OR ARCA1XXX | 27/2/2018 |
BIOLOGY
Advanced coursework and projects will be available in 2020 for students who complete this major.
Biology major
A major in Biology requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level experimental design units
(iii) 6 credit points of 2000-level taxonomy units
(iv) 6 credit points of 2000-level breadth units
(v) 6 credit points of 3000-level field units
(vi) 12 credit points of 3000-level selective units
Biology minor*
A minor in Biology requires 36 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level experimental design units
(iii) 6 credit points of 2000-level taxonomy units
(iv) 6 credit points of 2000-level breadth units
(v) 6 credit points of 3000-selective units
*The Plant Sciences minor also articulates to the Biology major
Units of study
The units of study are listed below.
1000-level units of study
Core
BIOL1006 Life and Evolution
Credit points: 6 Teacher/Coordinator: A/Prof Charlotte Taylor Session: Semester 1,Summer Main Classes: Two lectures per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Practical and communication (40%), during semester exams (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Please see unit outline on LMS
BIOL1906 Life and Evolution (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent. Assessment: Practical and communication (40%), during semester exams (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Please see unit outline on LMS
BIOL1996 Life and Evolution (SSP)
Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures as per BIOL1906; one 3-hour practical per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), practical reports (25%), seminar presentation (15%), lab note book (5%), prelaboratory quizzes (5%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS
BIOL1007 From Molecules to Ecosystems
Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2,Summer Main Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Pauline Ross Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)
Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), project report which includes written report and presentation (50%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be either a synthetic biology project investigating genetically engineered organisms or organismal/ecosystems biology. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
2000-level units of study
Experimental design units
BIOL2022 Biology Experimental Design and Analysis
Credit points: 6 Teacher/Coordinator: A/Prof Clare McArthur Session: Semester 2 Classes: Two lectures per week and one 3-hour practical per week. Prerequisites: 6cp from (BIOL1XXX or MBLG1XXX or ENVX1001 or ENVX1002 or DATA1001 or MATH1XX5) Prohibitions: BIOL2922 or BIOL3006 or BIOL3906 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Practical reports/presentations (60%), one 2-hour exam (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit provides foundational skills essential for doing research in biology and for critically judging the research of others. We consider how biology is practiced as a quantitative, experimental and theoretical science. We focus on the underlying principles and practical skills you need to explore questions and test hypotheses, particularly where background variation (error) is inherently high. In so doing, the unit provides you with an understanding of how biological research is designed, analysed and interpreted using statistics. Lectures focus on sound experimental and statistical principles, using examples in ecology and other fields of biology to demonstrate concepts. In the practical sessions, you will design and perform, analyse (using appropriate statistical tools) and interpret your own experiments to answer research questions in topics relevant to your particular interest. This unit of study provides a suitable foundation for senior biology units of study.
Textbooks
Required: Ruxton, G. and Colegrave, N. 2016. Experimental design for the life sciences. 4th Ed. Oxford
BIOL2922 Biol Experimental Design and Analysis Adv
Credit points: 6 Teacher/Coordinator: A/Prof Clare McArthur Session: Semester 2 Classes: Two lectures per week and one 3-hour practical per week. Prerequisites: [An annual average mark of at least 70 in the previous year] and [6cp from (BIOL1XXX or MBLG1XXX or ENVX1001 or ENVX1002 or DATA1001 or MATH1XX5)] Prohibitions: BIOL2022 or BIOL3006 or BIOL3906 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Practical reports/presentations (60%), one 2-hour exam (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
The content of BIOL2922 will be based on BIOL2022 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Required: Ruxton, G. and Colegrave, N. 2016. Experimental design for the life sciences. 4th Ed. Oxford
Taxonomy units
BIOL2030 Botany
Credit points: 6 Teacher/Coordinator: A/Prof Rosanne Quinnell Session: Semester 1 Classes: Two 1-hour lecture/week; one 3-hour practical/week; a series of five 1-hour tutorial/week in the latter part of the semester Prohibitions: BIOL2023 or BIOL2923 or AGEN2001 or PLNT2001 or PLNT2901 or PLNT2002 or PLNT2902 or PLNT2003 or PLNT2903 or AGEN2005 or BIOL2930 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quizzes (15%), anatomy project report and presentation (20%), practical exam (30%), theory exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) day
We are surrounded by plants, and rely on them every day for our wellbeing. Ecologists use botanical knowledge to help manage marine and terrestrial ecosystems, and public health and land management professionals depend on their understanding of plant science to help solve environmental problems and to enhance biosecurity. Botany aims to increase and improve our supply of medicines, foods, and other plant products, and is critical for anyone interested in contributing to the sustainable future of our planet. In this unit, you will explore the origins, diversity, and global significance of plants. You will gain insights into the micro- and macro-evolutionary processes and patterns behind how plants moved from aquatic ecosystems to terrestrial ecosystems. Integrated lectures, practical classes, and extensive online resources will allow you to develop and integrate practical skills and conceptual frame works in plant identification, plant physiology, plant anatomy, and plant morphology. Lectures and practical classes are augmented by self-instructional audio-visual sessions and by small group discussions to foster a sense of self-reliance and collaboration. Successful completion of BIOL2023 will allow you to contribute to a range of disciplines including: ecology, bioinformatics, molecular and cell biology, genetics and biotechnology, environmental law, agriculture, education and the arts.
Textbooks
Evert RF and Eichhorn SE. 2013. Raven: Biology of Plants. 8th Ed. Freeman and Co Publishers. New York. NY.
BIOL2930 Botany (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Rosanne Quinnell Session: Semester 1 Classes: Two 1-hour lectures/week; one 3-hour practical/week; a series of five 1-hour tutorial/week in the latter part of the semester Prerequisites: Annual average mark of at least 70 in previous year Prohibitions: BIOL2023 or BIOL2923 or AGEN2001 or PLNT2001 or PLNT2901 or PLNT2002 or PLNT2902 or PLNT2003 or PLNT2903 or AGEN2005 or BIOL2030 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quizzes (15%), advanced project report (20%), practical exam (30%), theory exam (35%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
We are surrounded by plants, and rely on them every day for our wellbeing. Ecologists use botanical knowledge to help manage marine and terrestrial ecosystems, and public health and land management professionals depend on their understanding of plant science to help solve environmental problems and to inform biosecurity. Botany aims to increase and improve our supply of medicines, foods, and other plant products, and is critical for anyone interested in contributing to the sustainable future of our planet. In this unit, you will explore the origins, diversity, and global significance of plants. You will gain insights into the micro- and macro-evolutionary processes and patterns behind how plants moved from aquatic ecosystems to terrestrial ecosystems. Integrated lectures, practical classes and extensive online resources will allow you to develop and integrate practical skills and conceptual frameworks in plant identification, and plant physiology, morphology and anatomy. Lectures and practical classes are augmented by discussions to foster a sense of self-reliance and collaboration. The Advanced Botany unit of study requires engagement at a high standard of academic rigour and affords opportunities to engage with core aspect of Botany at depth and to create new knowledge. In partnership with academic staff advanced students will undertake an independent research project, which will develop skills in research and communication.
Textbooks
Attwell BJ, Kriedeman PE, Turnbull CGN. 1999. Plants In Action. Macmillan, South Yarra. (Australian Plant Biology with a good section on ecophysiology).
BIOL2021 Zoology
Credit points: 6 Teacher/Coordinator: A/Prof Mathew Crowther Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prohibitions: BIOL2921 or BIOL2011 or BIOL2911 or BIOL2012 or BIOL2912 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: One 2-hour theory exam (50%), Lab book (15%), Invertebrate Collection (20%), Oral presentation (15%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides an overview of the functional and phylogenetic diversity of invertebrate and vertebrate animals. The material is presented within the conceptual framework of evolution, the foundation of biology. Lectures explore the diversity of major functional systems and behaviour in the context of environmental challenges and the ecological roles of different animal groups. Laboratory classes include dissections and demonstrations of the functional anatomy of invertebrates and vertebrates, as well as experiments. This unit of study provides a suitable foundation for senior biology units of study.
Textbooks
Recommended reading: Hickman CP, Roberts LS, Larson A, l'Anson H 2004. Integrated Principles of Zoology, 12th ed. McGraw Hill, NY. Withers, P. 1992 Comparative Animal Physiology. Saunders, New York
BIOL2921 Zoology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Mathew Crowther Session: Semester 1 Classes: Two 1-hour lectures, one tutorial/lecture and one 3-hour practical per week. Prerequisites: Annual average mark of at least 70 in previous year Prohibitions: BIOL2021 or BIOL2011 or BIOL2911 or BIOL2012 or BIOL2912 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: One 2-hour theory exam (50%), Lab book (15%), Invertebrate Collection (20%), Advanced poster presentation (15%). Mode of delivery: Normal (lecture/lab/tutorial) day
The content of BIOL2921 will be based on BIOL2021 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Recommended reading: Hickman CP, Roberts LS, Larson A, l'Anson H 2004. Integrated Principles of Zoology, 12th ed. McGraw Hill, NY. Withers, P. 1992 Comparative Animal Physiology. Saunders, New York
Breadth units
ANAT2009 Comparative Primate Anatomy
Credit points: 6 Teacher/Coordinator: Dr Denise Donlon Session: Semester 2 Classes: Two 1-hour lectures Prohibitions: ANAT2002 Assumed knowledge: BIOL1XX3 OR BIOL1XX8 Assessment: Two quizzes (10%), theory exam (60%), practical exam (30%). Practical field work: One 2-hour practical per week Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of student covers the musculo-skeletal anatomy of the human body with particular emphasis on human evolution and comparisons with apes and fossil hominids. The topics covered include the versatility of the human hand, in manipulation and locomotion, bipedalism, climbing and brachiation in apes, and the change in pelvic anatomy associated with bipedalism and obstetric consequences.
Textbooks
Kapit, W and Elson, LM 2014 The Anatomy Coloring Book. Addison-Wesley. 4th edition
IMMU2101 Introductory Immunology
Credit points: 6 Teacher/Coordinator: Dr Umaimainthan Palendira Session: Semester 1 Classes: Two 1 hour lectures per week, one 2-3 hour tutorial or practical per week. Prerequisites: BIOL1XX8 or BIOL1XX7 or BIOL1XX3 or BIOL1XX2 or MEDS1X01 or MBLG1XX1 Prohibitions: BMED2401 or BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406 or BMED2801 or BMED2802 or BMED2803 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 Assumed knowledge: CHEM1XX1 Assessment: Progressive assessment: includes written, practical, oral and online based assessments (50%); Formal assessment: one 2 hour examination (50%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: This is a prerequisite unit of study for IMMU3102, IMMU3202, IMMU3902 and IMMU3903. The completion of 6 credit points of MBLG units of study is highly recommended.
Our immune system not only protects us from viruses, bacteria, and parasites, it can prevent the growth of tumours. Sometimes our immune system can be the cause of diseases like multiple sclerosis, Type 1 diabetes and rheumatoid arthritis. If you are interested in studying how our immune system works to keep us alive, then Introductory Immunology is for you. This unit of study will provide an overview of the immune system and the essential features of immune responses. You will be treated to a lecture course delivered by cutting edge immunologists that begins with a study of immunology as a basic research science. This includes an introduction to the nature of the cells and molecules involved in the immune response. We build on this foundation by introducing the immunological principles underlying the eradication of infectious diseases, successful vaccination strategies, organ transplantation, combatting autoimmune diseases and treating cancer. The integrated tutorials will build on the lecture material as well as provide you with instructions on how to successfully locate and critically analyse scientific literature. The practical sessions will further illustrate particular concepts introduced in the lecture program and provide you with valuable exposure to a variety of very important immunological techniques.
Textbooks
Abul K Abbas, Andrew H Lichtman and Shiv Pillai. Basic Immunology: Functions and Disorders of the Immune System. 5th Ed. 2016
GEGE2001 Genetics and Genomics
Credit points: 6 Teacher/Coordinator: Prof Peter Sharp Session: Semester 1,Semester 2 Classes: Two lectures; one 3-hour practical session; and one peer assisted study session on a weekly basis Prohibitions: GENE2002 or MBLG2972 or GEGE2901 or MBLG2072 Assumed knowledge: Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression. Assessment: Assignments, quizzes, presentation, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution.
GEGE2901 Genetics and Genomics (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Peter Sharp Session: Semester 1,Semester 2 Classes: Two lectures; one 3-hour practical session; and one peer assisted study session on a weekly basis Prerequisites: Annual average mark of at least 70 Prohibitions: GENE2002 or MBLG2072 or GEGE2001 or MBLG2972 Assumed knowledge: Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression. Assessment: Assignments, quizzes, presentation, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution. The Advanced mode of Genetics and Genomics will provide you with challenge and a higher level of academic rigour. You will have the opportunity to plan and carry out a project that will develop your skills in contemporary genetics/molecular biology techniques and will provide you with a greater depth of disciplinary understanding. The Advanced mode will culminate in a written report and in an oral presentation where you will discuss a recent breakthrough that has been enabled by the use of modern genetics and genomics technologies. This is a unit for anyone wanting to better understand the how genetics has shaped the earth and how it will shape the future.
Textbooks
TBA
MICR2031 Microbiology
Credit points: 6 Teacher/Coordinator: Prof Michael Kertesz Session: Semester 1 Classes: Two 1-hour lectures per week; one 3-hour practical per week; three tutorial sessions Prohibitions: MICR2021 or MICR2921 or MICR2024 or MICR2931 Assumed knowledge: Fundamental concepts of microorganisms, biomolecules and ecosystems; CHEM1XX1 Assessment: Theory 60%: one 45-minute mid-semester theory exam (20%) and one 1.5-hour theory exam (40%); Practical 40%: one written assignment (15%), one group oral presentation (10%) and online quizzes (15%) Mode of delivery: Normal (lecture/lab/tutorial) day
Microbes are essential for every aspect of life on the planet. Microbes in the human gut control our digestion and our immune system, microbes in the soil are required for plant growth, microbes in the ocean fix more carbon dioxide than all the earth's trees. This unit of study will investigate the diversity and activity of microorganisms - viruses, bacteria, fungi, algae and protozoa - and look at how they interact with us, each other, plants and animals. You will examine how microbes underpin healthy ecosystems through nutrient cycling and biodegradation, their use industrially in biotechnology and food production, and their ability to cause harm, producing disease, poisoning, pollution and spoilage. Aspects of microbial ecology, nutrition, physiology and genetics will also be introduced. This unit of study will provide you with the breadth of knowledge and skills needed for further studies of microbiology, and will provide the fundamental understanding of microbes that you will require if you specialise in related fields such as biochemistry, molecular biology, immunology, agriculture, nutrition and food sciences, bioengineering and biotechnology, ecology or science education.
Textbooks
Willey et al, Prescott¿s Microbiology, 10th edition, McGraw-Hill, 2017
MICR2931 Microbiology (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Michael Kertesz Session: Semester 1 Classes: Two 1-hour lectures per week; one 3-hour practical per week; three tutorial sessions Prerequisites: A mark of 70 or above in 6cp from (BIOL1XXX or MBLG1XXX) Prohibitions: MICR2021 or MICR2921 or MICR2024 or MICR2031 Assumed knowledge: Fundamental concepts of microorganisms, biomolecules and ecosystems; CHEM1XX1 Assessment: Theory 60%: one 45 minute mid-semester theory exam (20%) and one 1.5-hour theory exam (40%); Practical 40%: two written assignments (10%, 15%), and online quizzes (15%) Mode of delivery: Normal (lecture/lab/tutorial) day
Microbes are essential for every aspect of life on the planet. Microbes in the human gut control our digestion and our immune system, microbes in the soil are required for plant growth, microbes in the ocean fix more carbon dioxide than all the Earth's trees. In this unit of study you will investigate the diversity and activity of microorganisms - viruses, bacteria, fungi, algae and protozoa - and look at how they interact with us, each other, plants and animals. You will examine how microbes underpin healthy ecosystems through nutrient cycling and biodegradation, their use industrially in biotechnology and food production, and their ability to cause harm, producing disease, poisoning, pollution and spoilage. Detailed aspects of microbial ecology, nutrition, physiology and genetics will also be introduced. This unit of study will provide you with the breadth of knowledge and skills needed for further studies of microbiology, and will provide the fundamental understanding of microbes that you will require to specialise in related fields such as biochemistry, molecular biology, immunology, agriculture, nutrition and food sciences, bioengineering and biotechnology, ecology, or science education. As an Advanced unit, MICR2931 provides increased challenge and academic rigour to develop a greater understanding and depth of disciplinary expertise. You will actively participate in a series of small group tutorials investigating the molecular detail of microbial communication and function, which will culminate in you creating a scientific research report that communicates your understanding of recent research in microbiology.
Textbooks
Willey et al, Prescott¿s Microbiology, 10th edition, McGraw-Hill, 2017
BIOL2021 Zoology
Credit points: 6 Teacher/Coordinator: A/Prof Mathew Crowther Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prohibitions: BIOL2921 or BIOL2011 or BIOL2911 or BIOL2012 or BIOL2912 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: One 2-hour theory exam (50%), Lab book (15%), Invertebrate Collection (20%), Oral presentation (15%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides an overview of the functional and phylogenetic diversity of invertebrate and vertebrate animals. The material is presented within the conceptual framework of evolution, the foundation of biology. Lectures explore the diversity of major functional systems and behaviour in the context of environmental challenges and the ecological roles of different animal groups. Laboratory classes include dissections and demonstrations of the functional anatomy of invertebrates and vertebrates, as well as experiments. This unit of study provides a suitable foundation for senior biology units of study.
Textbooks
Recommended reading: Hickman CP, Roberts LS, Larson A, l'Anson H 2004. Integrated Principles of Zoology, 12th ed. McGraw Hill, NY. Withers, P. 1992 Comparative Animal Physiology. Saunders, New York
BIOL2921 Zoology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Mathew Crowther Session: Semester 1 Classes: Two 1-hour lectures, one tutorial/lecture and one 3-hour practical per week. Prerequisites: Annual average mark of at least 70 in previous year Prohibitions: BIOL2021 or BIOL2011 or BIOL2911 or BIOL2012 or BIOL2912 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: One 2-hour theory exam (50%), Lab book (15%), Invertebrate Collection (20%), Advanced poster presentation (15%). Mode of delivery: Normal (lecture/lab/tutorial) day
The content of BIOL2921 will be based on BIOL2021 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Recommended reading: Hickman CP, Roberts LS, Larson A, l'Anson H 2004. Integrated Principles of Zoology, 12th ed. McGraw Hill, NY. Withers, P. 1992 Comparative Animal Physiology. Saunders, New York
BIOL2030 Botany
Credit points: 6 Teacher/Coordinator: A/Prof Rosanne Quinnell Session: Semester 1 Classes: Two 1-hour lecture/week; one 3-hour practical/week; a series of five 1-hour tutorial/week in the latter part of the semester Prohibitions: BIOL2023 or BIOL2923 or AGEN2001 or PLNT2001 or PLNT2901 or PLNT2002 or PLNT2902 or PLNT2003 or PLNT2903 or AGEN2005 or BIOL2930 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quizzes (15%), anatomy project report and presentation (20%), practical exam (30%), theory exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) day
We are surrounded by plants, and rely on them every day for our wellbeing. Ecologists use botanical knowledge to help manage marine and terrestrial ecosystems, and public health and land management professionals depend on their understanding of plant science to help solve environmental problems and to enhance biosecurity. Botany aims to increase and improve our supply of medicines, foods, and other plant products, and is critical for anyone interested in contributing to the sustainable future of our planet. In this unit, you will explore the origins, diversity, and global significance of plants. You will gain insights into the micro- and macro-evolutionary processes and patterns behind how plants moved from aquatic ecosystems to terrestrial ecosystems. Integrated lectures, practical classes, and extensive online resources will allow you to develop and integrate practical skills and conceptual frame works in plant identification, plant physiology, plant anatomy, and plant morphology. Lectures and practical classes are augmented by self-instructional audio-visual sessions and by small group discussions to foster a sense of self-reliance and collaboration. Successful completion of BIOL2023 will allow you to contribute to a range of disciplines including: ecology, bioinformatics, molecular and cell biology, genetics and biotechnology, environmental law, agriculture, education and the arts.
Textbooks
Evert RF and Eichhorn SE. 2013. Raven: Biology of Plants. 8th Ed. Freeman and Co Publishers. New York. NY.
BIOL2930 Botany (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Rosanne Quinnell Session: Semester 1 Classes: Two 1-hour lectures/week; one 3-hour practical/week; a series of five 1-hour tutorial/week in the latter part of the semester Prerequisites: Annual average mark of at least 70 in previous year Prohibitions: BIOL2023 or BIOL2923 or AGEN2001 or PLNT2001 or PLNT2901 or PLNT2002 or PLNT2902 or PLNT2003 or PLNT2903 or AGEN2005 or BIOL2030 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quizzes (15%), advanced project report (20%), practical exam (30%), theory exam (35%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
We are surrounded by plants, and rely on them every day for our wellbeing. Ecologists use botanical knowledge to help manage marine and terrestrial ecosystems, and public health and land management professionals depend on their understanding of plant science to help solve environmental problems and to inform biosecurity. Botany aims to increase and improve our supply of medicines, foods, and other plant products, and is critical for anyone interested in contributing to the sustainable future of our planet. In this unit, you will explore the origins, diversity, and global significance of plants. You will gain insights into the micro- and macro-evolutionary processes and patterns behind how plants moved from aquatic ecosystems to terrestrial ecosystems. Integrated lectures, practical classes and extensive online resources will allow you to develop and integrate practical skills and conceptual frameworks in plant identification, and plant physiology, morphology and anatomy. Lectures and practical classes are augmented by discussions to foster a sense of self-reliance and collaboration. The Advanced Botany unit of study requires engagement at a high standard of academic rigour and affords opportunities to engage with core aspect of Botany at depth and to create new knowledge. In partnership with academic staff advanced students will undertake an independent research project, which will develop skills in research and communication.
Textbooks
Attwell BJ, Kriedeman PE, Turnbull CGN. 1999. Plants In Action. Macmillan, South Yarra. (Australian Plant Biology with a good section on ecophysiology).
BIOL2032 Australian Wildlife Biology
Credit points: 6 Teacher/Coordinator: Dr Catherine Herbert Session: Semester 2 Classes: Three lectures; one 2-hour tutorial or practical session each week Prohibitions: ANSC2005 Assessment: Quizzes, presentation assignment, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Australia is home to a broad diversity of vertebrate wildlife species, many of which are unique to the Australian environment, having evolved in isolation from other large land-masses for millions of years. This unit examines the diversity of Australian reptiles, amphibians, birds and mammals (including all three mammalian lineages; monotremes, marsupials and eutherian mammals). We focus on the unique anatomical, physiological and behavioural adaptations that have enabled our wildlife to survive and thrive within varied Australian ecosystems. We also examine how the uniqueness of our wildlife is also one of its greatest challenges, being na¿ve to the new threats that are present in our rapidly changing environments. At the end of this unit you should have an appreciation of the diversity and uniqueness of Australian wildlife; be able to determine the links between form and function in wildlife and understand the significance of these functional adaptations in relation to ecological challenges. You will also have an understanding of the interactions between humans and wildlife, and how the unique characteristics of our wildlife also make them vulnerable to threats within the rapidly changing Australian environment. Students will also develop enhanced scientific literacy and communication skills through tutorial activities and assessment tasks.
Textbooks
No text book requirements. Recommended reading throughout semester provided by each lecture relevant to their class content. Relevant scientific papers will be uploaded to LMS
BIOL2029 Cells
Credit points: 6 Teacher/Coordinator: Dr Murray Thomson Session: Semester 1 Classes: Two 1-hour lectures; one 4-hour practical per week Prerequisites: BIOL1XX7 or MBLG1XXX Prohibitions: BIOL2016 or BIOL2916 or BIOL2929 Assessment: 3-hour theory exam (60%), quizzes (lectures and laboratory work) (10%), marks for laboratory work (10%), report (20%) Mode of delivery: Normal (lecture/lab/tutorial) day
Cell Biology is one of the most dynamic areas in science today. During development, a single cell zygote must undergo numerous divisions to become a multi-cellular organism. In both plants and animals, cell to cell communication and coordination of the cell cycle, as well as cellular division and migration, are vital for normal development. Stem cells follow specialisation pathways to become increasingly committed to differentiation, and transformation into specialised cells that group together to form the variety of tissues that make up animals and plants. In this unit you will investigate, the diversity of cell types, how these different cells interact with each other, how the cell cycle is controlled as well as studying the roles of cellular movement, differentiation and interaction in reproduction and development. In Cells you will develop a deep understanding of the established knowledge base and develop research skills to extend this knowledge. Discussions will incorporate recent advances in cell research including the regenerative potential of stem cells and their use in treatments to replace damaged and diseased tissue. The laboratory program, provides you with hands on training in key techniques such as in vitro cell culture, organelle isolation and experimentation, as well as microscopy. These skills will prepare you for a research pathway and/or a career that includes cell biology.
Textbooks
Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2014) Molecular Biology of the Cell (Sixth edition). Garland Publishing Inc., New York and London (ISBN-9780815344643)
BIOL2929 Cells (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Murray Thomson Session: Semester 1 Classes: Two 1-hour lectures; one 4-hour practical per week Prerequisites: A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) Prohibitions: BIOL2016 or BIOL2916 orBIOL2029 Assessment: 3-hour theory exam (60%), quizzes (lectures and laboratory work) (10%), marks for laboratory work (10%), advanced report (20%) Mode of delivery: Normal (lecture/lab/tutorial) day
Cell biology is one of the most dynamic areas of modern research. During development, a single cell zygote must undergo numerous divisions to become a multi-cellular organism. In both plants and animals, cell-to-cell communication and coordination of the cell cycle, as well as cellular division and migration, are vital for normal development. Stem cells follow specialisation pathways to become increasingly committed to differentiation, and transformation into specialised cells that group together to form the variety of tissues that make up animals and plants. In this unit you will investigate, the diversity of cell types, how these different cells interact with each other, how the cell cycle is controlled as well as studying the roles of cellular movement, differentiation and interaction in reproduction and development. In Cells you will develop a deep understanding of the established knowledge base and develop research skills to extend this knowledge. Discussions will incorporate recent advances in cell research including the regenerative potential of stem cells and their use in treatments to replace damaged and diseased tissue. The advanced program, will provide you with an opportunity to complete an authentic research project in a specialized area of cell biology.
Textbooks
Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2014) Molecular Biology of the Cell (Sixth edition). Garland Publishing Inc., New York and London (ISBN-9780815344643)
BIOL2033 Entomology
Credit points: 6 Teacher/Coordinator: Dr Tanya Latty Session: Semester 2 Classes: Two 1-hour lectures; one 3-hour practical sessions a weekly basis Prohibitions: ENTO2001 Assessment: Practical test, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Insects are the most abundant and diverse group of animals on earth; beetles alone account for 25% of animal life. Insects impact almost every facet of the ecosystem and our lives. Many insects play valuable and essential roles in pollinating different plant species, in predating and controlling insect pests and in recycling nutrients. Other insects are harmful and are the vectors for major diseases such as plague, malaria and recently emerged viral disease Zika. This unit will provide students with a broad introduction to entomology including insect evolution, ecology, anatomy and physiology. Students will learn applied entomological topics such as sustainable insect management in agricultural ecosystems, medical and veterinary entomology, insect-inspired technologies, and insects as a future food source for both livestock and humans. This theoretical background will be complemented by training in how to use and evaluate a range of identification tools such as lucid and traditional dichotomous keys that enable you to identify and classify major groups of insects. Practical classes will allow you to develop your identification, classification and preservation skills though examination of boxes of 'mystery insects' and through creating a museum-quality insect collection. Students will also learn procedures for caring and rearing live insects. By the end of the unit you will be well prepared to work in fields that require entomological skills.
Textbooks
Info will be made available via Blackboard. Keys will be available in practical classes and in the lab Manual
BIOL2031 Plants and Environment
Credit points: 6 Teacher/Coordinator: Prof Brent Kaiser Session: Semester 2 Classes: Two lectures; one 4-hour practical session on a weekly basis Prohibitions: AGEN2005 or BIOL3043 or BIOL3943 or BIOL2931 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quiz (20%), lab assignment (15%), presentation (15%), exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Plants grow across a range of environments, influencing form, function and ultimately reproductive success. Being sessile, plants lack the luxury of seeking an alternative 'stress-free lifestyle' and therefore rely on genetic and physical adaptations to survive and reproduce. To understand how a plant can achieve such flexibility requires knowledge of plant structure and the influence of environmental drivers on plant growth and function. In this unit, you will examine the physiological processes controlling plant growth and reproduction linked to environmental constraints. You will understand the relationship between tissue and cellular structure and their underlying role in physiological and metabolic activities, particularly processes involving light capture, photosynthesis, water regulation, nutrient management and metabolite redistribution. Lectures and interactive practicals will together introduce you to plant processes that underpin life on earth. Experimentation and analysis of plant physiological processes will develop a skill base that will lead to a greater understanding and appreciation of common plant processes. As a component of the Plant Science minor and the Plant Production major, BIOL2031 will provide an important platform to extend your interests in plant science and plant related fields across the curriculum.
Textbooks
Taiz, L. and Zeiger, E. (2010) Plant Physiology, Fifth Edition. Sinauer Associates. Sunderland, MA.
BIOL2931 Plants and Environment (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Brent Kaiser Session: Semester 2 Classes: Two 1-hour lectures/week; one 4-hour practical/week Prerequisites: Annual average mark of at least 70 in previous year Prohibitions: AGEN2005 or BIOL3043 or BIOL3943 or BIOL2031 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: On-line quiz (20%), lab assignment (15%), independent project (15%), exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Plants grow across a range of environments, which influence form, function and ultimately reproductive success. Being sessile, plants lack the luxury of seeking an alternative 'stress-free lifestyle' and therefore rely on genetic and physical adaptations to help survive and reproduce. To understand how a plant can achieve such flexibility requires an understanding of plant structure and the influence that environmental drivers have on plant growth and function. In this unit, you will examine the physiological processes controlling plant growth and reproduction linked to environmental constraints. You will understand the relationship between tissue and cellular structure and their underlying role in physiological and metabolic activities, particularly processes involving light capture, photosynthesis, water regulation, nutrient management and metabolite redistribution. Lectures and interactive practicals will together introduce you to plant processes that we commonly depend upon for food production, and plant related materials. Experimentation and analysis of plant physiological processes will develop a skill base that will lead to a greater understanding and appreciation of common plant processes that guide plant growth. As a component of the Plant Science minor, this unit will provide an important platform to extend your interests in plant science and plant-related fields, including ecology, cell biology, genetics, breeding, agriculture, molecular biology, environmental law, education and the arts. The advanced unit has the same overall concepts as BIOL2031 but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in BIOL2931 participate in alternative components, which include a separate lecture and practical stream. The content and nature of these components may vary from year to year.
Textbooks
Resources required by the unit will be provided on the Blackboard learning management page for the unit. Taiz, L. and Zeiger, E. (2010) Plant Physiology, Fifth Edition. Sinauer Associates. Sunderland, MA.
IMMU2X11 to be deveoped for offering in 2019.
3000-level units of study
Field units
BIOL3007 Ecology
Credit points: 6 Teacher/Coordinator: A/Prof Dieter Hochuli Session: Semester 2 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3907 Assessment: One 2-hour exam, group presentations, one essay, one project report (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit explores the dynamics of ecological systems, and considers the interactions between individual organisms and populations, organisms and the environment, and ecological processes. Lectures are grouped around four dominant themes: Interactions, Evolutionary Ecology, The Nature of Communities, and Conservation and Management. Emphasis is placed throughout on the importance of quantitative methods in ecology, including sound planning and experimental designs, and on the role of ecological science in the conservation, management, exploitation and control of populations. Relevant case studies and examples of ecological processes are drawn from marine, freshwater and terrestrial systems, with plants, animals, fungi and other life forms considered as required. Students will have some opportunity to undertake short term ecological projects, and to take part in discussions of important and emerging ideas in the ecological literature.
Textbooks
Begon M, Townsend CR, Harper JL (2005) Ecology, From individuals to ecosystems. Wiley-Blackwell.
BIOL3907 Ecology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Dieter Hochuli Session: Semester 2 Classes: Two lectures per week, weekly tutorial and 3-hour practical per week Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3007 Assessment: One 2-hour exam, presentations, one essay, one project report (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit has the same objectives as BIOL3007 Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit of study participate in alternatives to some elements of the standard course and will be encouraged to pursue the objectives by more independent means in a series of research tutorials. Specific details of this unit of study and assessment will be announced in meetings with students in week 1 of semester 2. This unit of study may be taken as part of the BSc (Advanced) program.
Textbooks
As for BIOL3007
BIOL3008 Marine Field Ecology
This unit of study is not available in 2018
Credit points: 6 Teacher/Coordinator: A/Prof Ross Coleman Session: Intensive July Classes: Intensive 8-day field course held in the pre-semester break. Prerequisites: 12 credit points of Intermediate BIOL, or (6 credit points of Intermediate BIOL and (MBLG2072 or MBLG2972)) Prohibitions: BIOL3908 or BIOL2028 or BIOL2928 Assessment: Discussion groups, research project proposal, biodiversity survey report, data analysis and checking, research project report (100%). Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit cannot be combined with more than one other BIOL field unit during the degree. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. The unit is only available in ODD years (2015, 2017?) but students may apply for entry into an alternative Intermediate field unit in EVEN years.
This field course provides a practical introduction to the experimental analysis of marine populations and assemblages. Students gain experience using a range of intertidal sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. No particular mathematical or statistical skills are required for this subject. Group experimental research projects in the field are the focus of the unit during the day, with lectures and discussion groups about the analysis of experimental data and current issues in experimental marine ecology occurring in the evening.
Textbooks
No textbook is prescribed but Coastal Marine Ecology of Temperate Australia. Eds. Underwood, A.J. & Chapman, M.G. 1995. University of New South Wales Press, provides useful background reading.
BIOL3908 Marine Field Ecology (Advanced)
This unit of study is not available in 2018
Credit points: 6 Teacher/Coordinator: A/Prof Ross Coleman. Session: Intensive July Classes: One 8-day field course held in the pre-semester break, plus four 1-hour tutorials during semester 2. Prerequisites: Distinction average in either- 12cp Intermediate BIOL, or (6cp Intermediate BIOL and(MBLG2072 or MBLG2972)) Prohibitions: BIOL3008 or BIOL2028 or BIOL2928 Assessment: Discussion groups, research project proposal, biodiversity report, data analysis and checking, research project report (100%). Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit cannot be combined with more than one other BIOL field unit during the degree. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. The unit is only available in ODD years (2015, 2017?) but students may apply for entry into an alternative Intermediate field unit in EVEN years.
This unit has the same objectives as Marine Field Ecology BIOL3008, and is suitable for students wishing to pursue certain aspects of marine field ecology in a greater depth. Entry is restricted and selection is made from applicants on the basis of past performance. Students taking this unit of study will be expected to take part in a number of additional tutorials after the field course on advanced aspects of experimental design and analysis and will be expected to incorporate these advanced skills into their analyses and project reports. This unit may be taken as part of the BSc(Advanced).
Textbooks
As for BIOL 3008.
BIOL3009 Terrestrial Field Ecology
Credit points: 6 Teacher/Coordinator: Prof Glenda Wardle Session: Intensive July Classes: Note: One 6-day field trip held in the pre-semester break and four 4-hour practical classes during weeks 1-4 of semester 2 Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3909 or BIOL2009 or BIOL2909 Assessment: Discussions and quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), specimen collection (10%), research project report (50%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit requires School permission to enrol; please see the School of Life and Environmental Sciences website for details on how to apply. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any Senior BIOL units of study may also be considered.
This intensive field-based course provides practical experience in terrestrial ecology suited to a broad range of careers in ecology, environmental consulting and wildlife management. Students learn a broad range of ecological sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. The field work takes place in native forest and incorporates survey techniques for plants, small mammals and invertebrates and thus provides a good background for ecological consulting work and an introduction into large-scale project management. Students attend a week-long field course and participate in a large-scale research project as well as conducting their own research project. Emphasis is placed on critical thinking in the context of environmental management and technical skills are developed in the area of data handling and analysis, report writing and team work. Invited experts contribute to the lectures and discussions on issues relating to the ecology, conservation and management of Australia's terrestrial flora and fauna.
BIOL3909 Terrestrial Field Ecology (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Glenda Wardle Session: Intensive July Classes: One 6-day field trip held in the pre-semester break and four 4-hour practical classes during weeks 1-4 of semester 2 Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3009 or BIOL2009 or BIOL2909 Assessment: Discussions and quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), sample and data processing (10%), research project report (50%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit requires School permission to enrol; please see the School of Life and Environmental Sciences website for details on how to apply. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any Senior BIOL units of study may also be considered. This unit is not offered from 2019.
This unit has the same objectives as BIOL3009 Terrestrial Field Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from applicants on the basis of previous performance. Students taking this unit of study will complete an individual research project on a topic negotiated with a member of staff. It is expected that much of the data collection will be completed during the field trip but some extra time may be needed during semester 2. Specific details of this unit of study and assessment will be announced in meetings with students at the beginning of the unit. This unit of study may be taken as part of the BSc (Advanced) program.
BIOL3010 Tropical Wildlife Biology
This unit of study is not available in 2018
Credit points: 6 Teacher/Coordinator: Dr Matthew Greenless Session: Intensive February Classes: One week intensive field trip to the Northern Territory plus one week intensive lecture and prac session at Sydney University. Prerequisites: 12 credit points of Intermediate BIOL, or (6 credit points of Intermediate BIOL and (MBLG2072 or MBLG2972)) Prohibitions: BIOL3910 or BIOL2010 or BIOL2910 Assessment: One 2-hour theory exam, one 1-hour practical exam, one 1500-word report, one 2000-word paper, one 15-minute oral presentation (100%). Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit runs in February. It cannot be combined with more than one other BIOL field unit during the degree. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. The unit is only available in ODD years (2017, 2019) but students may apply for entry into an alternative Intermediate field unit in EVEN years.
Australia has a unique terrestrial vertebrate fauna, but also has the worst record of recent mammalian extinctions. Because of Australia's unusual climate, landforms, and the rarity of many species, the management of our native wildlife presents special challenges for biologists, conservationists and land managers. This unit of study addresses the biogeography, ecology and management of Australia's terrestrial fauna. The subject comprises of a five-day field course at Mary River Park in the Northern Territory. During the course, students will learn how to carry out wildlife surveys, how to identify animals, how to track wildlife, and how to design and complete a field experiment. The field trip will be complemented by guest lectures from experts in the fields of evolution, ecology and wildlife management. A one day field trip to Litchfield National Park will be held on the last day of the field course.
BIOL3910 Tropical Wildlife Biology (Adv)
This unit of study is not available in 2018
Credit points: 6 Teacher/Coordinator: Dr Matthew Greenless Session: Intensive February Classes: One week intensive field trip to the Northern Territory plus one week intensive lecture and prac session at Sydney University. Prerequisites: Distinction average in either- 12cp Intermediate BIOL, or (6cp Intermediate BIOL and(MBLG2072 or MBLG2972)) Prohibitions: BIOL3010 or BIOL2010 or BIOL2910 Assessment: One 2-hour theory exam, one 1-hour practical exam, one 1500-word report, one 2000-word paper, one 15-minute oral presentation (100%). Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit runs in February. It cannot be combined with more than one other BIOL field unit during the degree. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. The unit is only available in ODD years (2017, 2019) but students may apply for entry into an alternative Intermediate field unit in EVEN years.
This unit has the same objectives as BIOL3010 Tropical Wildlife Biology and Management, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit of study will participate in alternatives to some elements of the standard course and will be required to pursue the objectives by more independent means. For example, student willl be able to design and carry out their own field or laboratory experiment, and complete it during the five day firled trip. Specific details of this unit of study and assessment will be announced in meetings with students at the beginning of the unit.
BIOL3016 Coral Reef Biology
Credit points: 6 Teacher/Coordinator: A/Prof Will Figueira Session: Intensive July Classes: Fieldwork 80 hours block mode (during July) Prerequisites: [12cp of BIOL2XXX] OR [6cp from BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3916 or BIOL2020 or BIOL2920 or NTMP3001 Assessment: Participation in field work, essay, project report and an exam (100%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit requires School permission to enrol; please see the School of Life and Environmental Sciences website for details on how to apply. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any Senior BIOL units of study may also be considered.
Coral Reef Biology is an intensive unit held at a research station on the Great Barrier Reef. The unit focuses on the dominant taxa in coral reef environments and the linkages between them. Emphasis is placed on the biological adaptations for life in tropical waters and the ecological, oceanographic and physiological processes involved. Aspects covered include: processes influencing the distribution of coral reefs, symbiosis, reef connectivity, lagoon systems, nutrient cycling and the impacts of climate change and other anthropogenic pressures on the world's corals reefs.
BIOL3916 Coral Reef Biology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Will Figueira Session: Intensive July Classes: Fieldwork 80 hours block mode (during July) Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3016 or BIOL2020 or BIOL2920 or NTMP3001 Assessment: Participation in field work, essay, project report and exam (100%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit requires School permission to enrol; please see the School of Life and Environmental Sciences website for details on how to apply. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any Senior BIOL units of study may also be considered.
This unit has the same objectives as BIOL3016, Coral Reef Biology, and is suitable for students who wish to pursue certain aspects of tropical marine biology in greater depth, with a focus on the GBR. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit of study will pursue individual projects in consultation with, and under the guidance of, the course coordinator. The aim is to design a project relating to the particular interests of the student. The nature of these projects will vary from year to year. This unit of study may be taken as part of the BSc (Advanced) program.
Major selective units
BIOL3013 Marine Biology
Credit points: 6 Teacher/Coordinator: A/Prof Will Figueira Session: Semester 2 Classes: Two 1-hour lectures and one 4-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp from BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3913 Assessment: Practical reports, data exercises and exams (100%). Practical field work: Combination of field, lab and computer based practical activities Mode of delivery: Normal (lecture/lab/tutorial) day
We will examine in detail processes that are important for the establishment and maintenance of marine communities. Lectures will expose students to the key ideas, researchers and methodologies within selected fields of marine biology. Laboratory sessions and field excursions will complement the lectures by providing students with hands-on experience with the organisms and the processes that affect them. Students will develop critical analysis and scientific writing skills while examining the current literature.
BIOL3913 Marine Biology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Will Figueira Session: Semester 2 Classes: See BIOL3013. Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3013 Assessment: Practical reports, data exercises and exams (100%). Practical field work: Combination of field, lab and computer-based practical activities Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of the BIOL3013 Marine Biology unit. The content and nature of these components may vary from year to year but generally involves an individual or group project, conducted with unit instructors, which takes the place of one of the practical-based assessments..
BIOL3018 Gene Technology and Genomics
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX) Prohibitions: BIOL3918 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the regulation, impact and implications of genetic engineering and genomics. Topics include biological sequence data and databases, comparative genomics, the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines, new diagnostic techniques for human and veterinary disease, and the genetic engineering of animals and plants. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and bioinformatics, immunological detection of proteins, and the genetic transformation and assay of plants.
BIOL3918 Gene Technology and Genomics (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX)] Prohibitions: BIOL3018 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of BIOL3018 Gene Technology and Genomics. The content and nature of these components may vary from year to year.
BIOL3026 Developmental Genetics
Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 2 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX) Prohibitions: BIOL3926 Assessment: One 2-hour exam, assignments (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Developmental genetics discusses major concepts and our current understanding of developmental biology with an emphasis on molecular genetics. The developmental genetics of animal and plant systems will be investigated, along with approaches used to determine gene function in relation to development of complex multicellular organisms. Topics include the features and resources for model organisms; the generation of mutants for forward and reverse genetics; the application of mutants to the study gene function and gene networks; spatial and temporal gene expression in pattern formation; quantitative trait loci analysis; utility of genome wide association studies; epigenetics in relation to inheritance; genome information in the study of human genetics. Reference will be made to the use of modern techniques in developmental biology such as transgenics, recombinant DNA technology, tissue-specific expression analysis. Various methods of genetic mapping will be covered. Practical work complements the theoretical aspects of the course and develops important skills in genetics.
BIOL3926 Developmental Genetics (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 2 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX)] Prohibitions: BIOL3929 or BIOL3026 Assessment: One 2-hour exam, assignments (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components to BIOL3026 Developmental Genetics. The content and nature of these components may vary from year to year. Some assessment will be in an alternative format to components of BIOL3026.
BIOL3045 Animal Ecological Physiology
Credit points: 6 Teacher/Coordinator: Prof Frank Seebacher Session: Semester 1 Classes: Two lectures and three practicals per week Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3945 or BIOL3011 or BIOL3911 or BIOL3012 or BIOL3912 Assessment: Two practical reports (20% and 40% of total marks, respectively), one 1.5-hour exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Animal Ecological Physiology is a conceptually based unit of study that covers physiological interactions between organisms and their environments. The unit explores evolutionary processes that allow animals to persist in variable environments. These concepts are essential to understanding biodiversity and ecological function of animal populations, and how these are likely to change under future climate change. The unit will be suitable for those with an interest in zoology, as well as students with a particular interest in ecology and evolution. There is a strong focus on experimental biology and incorporating theory into practical classes, during which students design their own experiments. Good working knowledge of statistical analyses is assumed. The unit provides essential skills for conducting and presenting research, and for critical evaluation of published research.
BIOL3945 Animal Ecological Physiology (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Frank Seebacher Session: Semester 1 Classes: Two lectures and three practicals per week. Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3045 or BIOL3011 or BIOL3911 or BIOL3012 or BIOL3912 Assessment: One practical report (20%) and one advanced report (40%), one 1.5-hour exam (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
The content will be based on the standard unit BIOL3045 but qualified students will participate in alternative components at a more advanced level. Animal Ecological Physiology is a conceptually based unit of study that covers physiological interactions between organisms and their environments. The unit explores evolutionary processes that allow animals to persist in variable environments. These concepts are essential to understanding biodiversity and ecological function of animal populations, and how these are likely to change under future climate change. The unit will be suitable for those with an interest in zoology, as well as students with a particular interest in ecology and evolution. There is a strong focus on experimental biology and incorporating theory into practical classes, during which students design their own experiments. Good working knowledge of statistical analyses is assumed. The unit provides essential skills for conducting and presenting research, and for critical evaluation of published research.
BIOL3046 Animal Behaviour
Credit points: 6 Teacher/Coordinator: Prof Ashley Ward Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp from BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3946 or BIOL3025 or BIOL3925 Assessment: Practical reports, one 2-hour exam (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
The unit will provide a broad overview of the scientific study of animal behaviour. It will consider mechanistic and functional explanations of animal behaviour across contexts including kin selection and altruism, sociality, foraging, aggression and competition, sexual selection and mate choice, the behaviour of predators and prey, and communication and signalling. The information presented and discussed in this unit will reflect the most up-to-date research in each aspect of the field of animal behaviour. Practical sessions are closely aligned with the lecture material and will foster the development of key skills by providing hands-on experience of experimental design, data collection and analysis.
Textbooks
Davies, Krebs, West: An Introduction to Behavioural Ecology, 4th edition, Wiley-Blackwell.
BIOL3946 Animal Behaviour (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Ashley Ward Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3046 or BIOL3025 or BIOL3925 Assessment: Practical reports, one 2-hour exam (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The content will be based on the standard unit BIOL3046 but qualified students will participate in alternative components at a more advanced level. The unit will provide a broad overview of the scientific study of animal behaviour. It will consider mechanistic and functional explanations of animal behaviour across contexts including kin selection and altruism, sociality, foraging, aggression and competition, sexual selection and mate choice, the behaviour of predators and prey, and communication and signalling. The information presented and discussed in this unit will reflect the most up-to-date research in each aspect of the field of animal behaviour. Practical sessions are closely aligned with the lecture material and will foster the development of key skills by providing hands-on experience of experimental design, data collection and analysis.
Textbooks
Davies, Krebs, West: An Introduction to Behavioural Ecology, 4th edition, Wiley-Blackwell.
Minor selective units
BIOL3007 Ecology
Credit points: 6 Teacher/Coordinator: A/Prof Dieter Hochuli Session: Semester 2 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3907 Assessment: One 2-hour exam, group presentations, one essay, one project report (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit explores the dynamics of ecological systems, and considers the interactions between individual organisms and populations, organisms and the environment, and ecological processes. Lectures are grouped around four dominant themes: Interactions, Evolutionary Ecology, The Nature of Communities, and Conservation and Management. Emphasis is placed throughout on the importance of quantitative methods in ecology, including sound planning and experimental designs, and on the role of ecological science in the conservation, management, exploitation and control of populations. Relevant case studies and examples of ecological processes are drawn from marine, freshwater and terrestrial systems, with plants, animals, fungi and other life forms considered as required. Students will have some opportunity to undertake short term ecological projects, and to take part in discussions of important and emerging ideas in the ecological literature.
Textbooks
Begon M, Townsend CR, Harper JL (2005) Ecology, From individuals to ecosystems. Wiley-Blackwell.
BIOL3907 Ecology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Dieter Hochuli Session: Semester 2 Classes: Two lectures per week, weekly tutorial and 3-hour practical per week Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3007 Assessment: One 2-hour exam, presentations, one essay, one project report (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit has the same objectives as BIOL3007 Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit of study participate in alternatives to some elements of the standard course and will be encouraged to pursue the objectives by more independent means in a series of research tutorials. Specific details of this unit of study and assessment will be announced in meetings with students in week 1 of semester 2. This unit of study may be taken as part of the BSc (Advanced) program.
Textbooks
As for BIOL3007
BIOL3013 Marine Biology
Credit points: 6 Teacher/Coordinator: A/Prof Will Figueira Session: Semester 2 Classes: Two 1-hour lectures and one 4-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp from BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3913 Assessment: Practical reports, data exercises and exams (100%). Practical field work: Combination of field, lab and computer based practical activities Mode of delivery: Normal (lecture/lab/tutorial) day
We will examine in detail processes that are important for the establishment and maintenance of marine communities. Lectures will expose students to the key ideas, researchers and methodologies within selected fields of marine biology. Laboratory sessions and field excursions will complement the lectures by providing students with hands-on experience with the organisms and the processes that affect them. Students will develop critical analysis and scientific writing skills while examining the current literature.
BIOL3913 Marine Biology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Will Figueira Session: Semester 2 Classes: See BIOL3013. Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3013 Assessment: Practical reports, data exercises and exams (100%). Practical field work: Combination of field, lab and computer-based practical activities Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of the BIOL3013 Marine Biology unit. The content and nature of these components may vary from year to year but generally involves an individual or group project, conducted with unit instructors, which takes the place of one of the practical-based assessments..
BIOL3018 Gene Technology and Genomics
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX) Prohibitions: BIOL3918 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the regulation, impact and implications of genetic engineering and genomics. Topics include biological sequence data and databases, comparative genomics, the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines, new diagnostic techniques for human and veterinary disease, and the genetic engineering of animals and plants. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and bioinformatics, immunological detection of proteins, and the genetic transformation and assay of plants.
BIOL3918 Gene Technology and Genomics (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX)] Prohibitions: BIOL3018 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of BIOL3018 Gene Technology and Genomics. The content and nature of these components may vary from year to year.
BIOL3026 Developmental Genetics
Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 2 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX) Prohibitions: BIOL3926 Assessment: One 2-hour exam, assignments (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Developmental genetics discusses major concepts and our current understanding of developmental biology with an emphasis on molecular genetics. The developmental genetics of animal and plant systems will be investigated, along with approaches used to determine gene function in relation to development of complex multicellular organisms. Topics include the features and resources for model organisms; the generation of mutants for forward and reverse genetics; the application of mutants to the study gene function and gene networks; spatial and temporal gene expression in pattern formation; quantitative trait loci analysis; utility of genome wide association studies; epigenetics in relation to inheritance; genome information in the study of human genetics. Reference will be made to the use of modern techniques in developmental biology such as transgenics, recombinant DNA technology, tissue-specific expression analysis. Various methods of genetic mapping will be covered. Practical work complements the theoretical aspects of the course and develops important skills in genetics.
BIOL3926 Developmental Genetics (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 2 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX)] Prohibitions: BIOL3929 or BIOL3026 Assessment: One 2-hour exam, assignments (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components to BIOL3026 Developmental Genetics. The content and nature of these components may vary from year to year. Some assessment will be in an alternative format to components of BIOL3026.
BIOL3045 Animal Ecological Physiology
Credit points: 6 Teacher/Coordinator: Prof Frank Seebacher Session: Semester 1 Classes: Two lectures and three practicals per week Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3945 or BIOL3011 or BIOL3911 or BIOL3012 or BIOL3912 Assessment: Two practical reports (20% and 40% of total marks, respectively), one 1.5-hour exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Animal Ecological Physiology is a conceptually based unit of study that covers physiological interactions between organisms and their environments. The unit explores evolutionary processes that allow animals to persist in variable environments. These concepts are essential to understanding biodiversity and ecological function of animal populations, and how these are likely to change under future climate change. The unit will be suitable for those with an interest in zoology, as well as students with a particular interest in ecology and evolution. There is a strong focus on experimental biology and incorporating theory into practical classes, during which students design their own experiments. Good working knowledge of statistical analyses is assumed. The unit provides essential skills for conducting and presenting research, and for critical evaluation of published research.
BIOL3945 Animal Ecological Physiology (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Frank Seebacher Session: Semester 1 Classes: Two lectures and three practicals per week. Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3045 or BIOL3011 or BIOL3911 or BIOL3012 or BIOL3912 Assessment: One practical report (20%) and one advanced report (40%), one 1.5-hour exam (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
The content will be based on the standard unit BIOL3045 but qualified students will participate in alternative components at a more advanced level. Animal Ecological Physiology is a conceptually based unit of study that covers physiological interactions between organisms and their environments. The unit explores evolutionary processes that allow animals to persist in variable environments. These concepts are essential to understanding biodiversity and ecological function of animal populations, and how these are likely to change under future climate change. The unit will be suitable for those with an interest in zoology, as well as students with a particular interest in ecology and evolution. There is a strong focus on experimental biology and incorporating theory into practical classes, during which students design their own experiments. Good working knowledge of statistical analyses is assumed. The unit provides essential skills for conducting and presenting research, and for critical evaluation of published research.
BIOL3046 Animal Behaviour
Credit points: 6 Teacher/Coordinator: Prof Ashley Ward Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp from BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3946 or BIOL3025 or BIOL3925 Assessment: Practical reports, one 2-hour exam (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
The unit will provide a broad overview of the scientific study of animal behaviour. It will consider mechanistic and functional explanations of animal behaviour across contexts including kin selection and altruism, sociality, foraging, aggression and competition, sexual selection and mate choice, the behaviour of predators and prey, and communication and signalling. The information presented and discussed in this unit will reflect the most up-to-date research in each aspect of the field of animal behaviour. Practical sessions are closely aligned with the lecture material and will foster the development of key skills by providing hands-on experience of experimental design, data collection and analysis.
Textbooks
Davies, Krebs, West: An Introduction to Behavioural Ecology, 4th edition, Wiley-Blackwell.
BIOL3946 Animal Behaviour (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Ashley Ward Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3046 or BIOL3025 or BIOL3925 Assessment: Practical reports, one 2-hour exam (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The content will be based on the standard unit BIOL3046 but qualified students will participate in alternative components at a more advanced level. The unit will provide a broad overview of the scientific study of animal behaviour. It will consider mechanistic and functional explanations of animal behaviour across contexts including kin selection and altruism, sociality, foraging, aggression and competition, sexual selection and mate choice, the behaviour of predators and prey, and communication and signalling. The information presented and discussed in this unit will reflect the most up-to-date research in each aspect of the field of animal behaviour. Practical sessions are closely aligned with the lecture material and will foster the development of key skills by providing hands-on experience of experimental design, data collection and analysis.
Textbooks
Davies, Krebs, West: An Introduction to Behavioural Ecology, 4th edition, Wiley-Blackwell.
BIOL3029, BIOL3033, BIOL3020 to be developed for offering in 2019.
Plant Science Minor
A minor in Plant Science requires 36 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units
(iii) 6 credit points of 3000-level core units
(iv) 6 credit points of 3000-level selective units
Units of Study
The units of study are listed below.
1000-level units of study
Core
BIOL1006 Life and Evolution
Credit points: 6 Teacher/Coordinator: A/Prof Charlotte Taylor Session: Semester 1,Summer Main Classes: Two lectures per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Practical and communication (40%), during semester exams (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Please see unit outline on LMS
BIOL1906 Life and Evolution (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent. Assessment: Practical and communication (40%), during semester exams (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Please see unit outline on LMS
BIOL1996 Life and Evolution (SSP)
Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures as per BIOL1906; one 3-hour practical per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), practical reports (25%), seminar presentation (15%), lab note book (5%), prelaboratory quizzes (5%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS
BIOL1007 From Molecules to Ecosystems
Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2,Summer Main Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Pauline Ross Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)
Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), project report which includes written report and presentation (50%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be either a synthetic biology project investigating genetically engineered organisms or organismal/ecosystems biology. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
2000-level units of study
Core
BIOL2030 Botany
Credit points: 6 Teacher/Coordinator: A/Prof Rosanne Quinnell Session: Semester 1 Classes: Two 1-hour lecture/week; one 3-hour practical/week; a series of five 1-hour tutorial/week in the latter part of the semester Prohibitions: BIOL2023 or BIOL2923 or AGEN2001 or PLNT2001 or PLNT2901 or PLNT2002 or PLNT2902 or PLNT2003 or PLNT2903 or AGEN2005 or BIOL2930 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quizzes (15%), anatomy project report and presentation (20%), practical exam (30%), theory exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) day
We are surrounded by plants, and rely on them every day for our wellbeing. Ecologists use botanical knowledge to help manage marine and terrestrial ecosystems, and public health and land management professionals depend on their understanding of plant science to help solve environmental problems and to enhance biosecurity. Botany aims to increase and improve our supply of medicines, foods, and other plant products, and is critical for anyone interested in contributing to the sustainable future of our planet. In this unit, you will explore the origins, diversity, and global significance of plants. You will gain insights into the micro- and macro-evolutionary processes and patterns behind how plants moved from aquatic ecosystems to terrestrial ecosystems. Integrated lectures, practical classes, and extensive online resources will allow you to develop and integrate practical skills and conceptual frame works in plant identification, plant physiology, plant anatomy, and plant morphology. Lectures and practical classes are augmented by self-instructional audio-visual sessions and by small group discussions to foster a sense of self-reliance and collaboration. Successful completion of BIOL2023 will allow you to contribute to a range of disciplines including: ecology, bioinformatics, molecular and cell biology, genetics and biotechnology, environmental law, agriculture, education and the arts.
Textbooks
Evert RF and Eichhorn SE. 2013. Raven: Biology of Plants. 8th Ed. Freeman and Co Publishers. New York. NY.
BIOL2930 Botany (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Rosanne Quinnell Session: Semester 1 Classes: Two 1-hour lectures/week; one 3-hour practical/week; a series of five 1-hour tutorial/week in the latter part of the semester Prerequisites: Annual average mark of at least 70 in previous year Prohibitions: BIOL2023 or BIOL2923 or AGEN2001 or PLNT2001 or PLNT2901 or PLNT2002 or PLNT2902 or PLNT2003 or PLNT2903 or AGEN2005 or BIOL2030 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quizzes (15%), advanced project report (20%), practical exam (30%), theory exam (35%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
We are surrounded by plants, and rely on them every day for our wellbeing. Ecologists use botanical knowledge to help manage marine and terrestrial ecosystems, and public health and land management professionals depend on their understanding of plant science to help solve environmental problems and to inform biosecurity. Botany aims to increase and improve our supply of medicines, foods, and other plant products, and is critical for anyone interested in contributing to the sustainable future of our planet. In this unit, you will explore the origins, diversity, and global significance of plants. You will gain insights into the micro- and macro-evolutionary processes and patterns behind how plants moved from aquatic ecosystems to terrestrial ecosystems. Integrated lectures, practical classes and extensive online resources will allow you to develop and integrate practical skills and conceptual frameworks in plant identification, and plant physiology, morphology and anatomy. Lectures and practical classes are augmented by discussions to foster a sense of self-reliance and collaboration. The Advanced Botany unit of study requires engagement at a high standard of academic rigour and affords opportunities to engage with core aspect of Botany at depth and to create new knowledge. In partnership with academic staff advanced students will undertake an independent research project, which will develop skills in research and communication.
Textbooks
Attwell BJ, Kriedeman PE, Turnbull CGN. 1999. Plants In Action. Macmillan, South Yarra. (Australian Plant Biology with a good section on ecophysiology).
BIOL2031 Plants and Environment
Credit points: 6 Teacher/Coordinator: Prof Brent Kaiser Session: Semester 2 Classes: Two lectures; one 4-hour practical session on a weekly basis Prohibitions: AGEN2005 or BIOL3043 or BIOL3943 or BIOL2931 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: Online quiz (20%), lab assignment (15%), presentation (15%), exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Plants grow across a range of environments, influencing form, function and ultimately reproductive success. Being sessile, plants lack the luxury of seeking an alternative 'stress-free lifestyle' and therefore rely on genetic and physical adaptations to survive and reproduce. To understand how a plant can achieve such flexibility requires knowledge of plant structure and the influence of environmental drivers on plant growth and function. In this unit, you will examine the physiological processes controlling plant growth and reproduction linked to environmental constraints. You will understand the relationship between tissue and cellular structure and their underlying role in physiological and metabolic activities, particularly processes involving light capture, photosynthesis, water regulation, nutrient management and metabolite redistribution. Lectures and interactive practicals will together introduce you to plant processes that underpin life on earth. Experimentation and analysis of plant physiological processes will develop a skill base that will lead to a greater understanding and appreciation of common plant processes. As a component of the Plant Science minor and the Plant Production major, BIOL2031 will provide an important platform to extend your interests in plant science and plant related fields across the curriculum.
Textbooks
Taiz, L. and Zeiger, E. (2010) Plant Physiology, Fifth Edition. Sinauer Associates. Sunderland, MA.
BIOL2931 Plants and Environment (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Brent Kaiser Session: Semester 2 Classes: Two 1-hour lectures/week; one 4-hour practical/week Prerequisites: Annual average mark of at least 70 in previous year Prohibitions: AGEN2005 or BIOL3043 or BIOL3943 or BIOL2031 Assumed knowledge: Knowledge of concepts and skills in BIOL1XX6. Assessment: On-line quiz (20%), lab assignment (15%), independent project (15%), exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Plants grow across a range of environments, which influence form, function and ultimately reproductive success. Being sessile, plants lack the luxury of seeking an alternative 'stress-free lifestyle' and therefore rely on genetic and physical adaptations to help survive and reproduce. To understand how a plant can achieve such flexibility requires an understanding of plant structure and the influence that environmental drivers have on plant growth and function. In this unit, you will examine the physiological processes controlling plant growth and reproduction linked to environmental constraints. You will understand the relationship between tissue and cellular structure and their underlying role in physiological and metabolic activities, particularly processes involving light capture, photosynthesis, water regulation, nutrient management and metabolite redistribution. Lectures and interactive practicals will together introduce you to plant processes that we commonly depend upon for food production, and plant related materials. Experimentation and analysis of plant physiological processes will develop a skill base that will lead to a greater understanding and appreciation of common plant processes that guide plant growth. As a component of the Plant Science minor, this unit will provide an important platform to extend your interests in plant science and plant-related fields, including ecology, cell biology, genetics, breeding, agriculture, molecular biology, environmental law, education and the arts. The advanced unit has the same overall concepts as BIOL2031 but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in BIOL2931 participate in alternative components, which include a separate lecture and practical stream. The content and nature of these components may vary from year to year.
Textbooks
Resources required by the unit will be provided on the Blackboard learning management page for the unit. Taiz, L. and Zeiger, E. (2010) Plant Physiology, Fifth Edition. Sinauer Associates. Sunderland, MA.
3000-level units of study
Core
BOL3020 to be developed for offering in 2019.
Selective
BIOL3009 Terrestrial Field Ecology
Credit points: 6 Teacher/Coordinator: Prof Glenda Wardle Session: Intensive July Classes: Note: One 6-day field trip held in the pre-semester break and four 4-hour practical classes during weeks 1-4 of semester 2 Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3909 or BIOL2009 or BIOL2909 Assessment: Discussions and quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), specimen collection (10%), research project report (50%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit requires School permission to enrol; please see the School of Life and Environmental Sciences website for details on how to apply. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any Senior BIOL units of study may also be considered.
This intensive field-based course provides practical experience in terrestrial ecology suited to a broad range of careers in ecology, environmental consulting and wildlife management. Students learn a broad range of ecological sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. The field work takes place in native forest and incorporates survey techniques for plants, small mammals and invertebrates and thus provides a good background for ecological consulting work and an introduction into large-scale project management. Students attend a week-long field course and participate in a large-scale research project as well as conducting their own research project. Emphasis is placed on critical thinking in the context of environmental management and technical skills are developed in the area of data handling and analysis, report writing and team work. Invited experts contribute to the lectures and discussions on issues relating to the ecology, conservation and management of Australia's terrestrial flora and fauna.
BIOL3909 Terrestrial Field Ecology (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Glenda Wardle Session: Intensive July Classes: One 6-day field trip held in the pre-semester break and four 4-hour practical classes during weeks 1-4 of semester 2 Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3009 or BIOL2009 or BIOL2909 Assessment: Discussions and quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), sample and data processing (10%), research project report (50%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: This unit requires School permission to enrol; please see the School of Life and Environmental Sciences website for details on how to apply. Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any Senior BIOL units of study may also be considered. This unit is not offered from 2019.
This unit has the same objectives as BIOL3009 Terrestrial Field Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from applicants on the basis of previous performance. Students taking this unit of study will complete an individual research project on a topic negotiated with a member of staff. It is expected that much of the data collection will be completed during the field trip but some extra time may be needed during semester 2. Specific details of this unit of study and assessment will be announced in meetings with students at the beginning of the unit. This unit of study may be taken as part of the BSc (Advanced) program.
BIOL3029 to be developed for offering in 2019.