Wildlife Conservation descriptions
Unit outlines will be available through Find a unit outline two weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.
WILDLIFE CONSERVATION
Wildlife Conservation minor
This minor articulates to the Ecology and Evolutionary Biology major.
A minor in Wildlife Conservation requires 36 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units
(iii) 12 credit points of 3000-level minor core units
Units of study
The units of study are listed below.
1000-level units of study
Core
BIOL1006 Life and Evolution
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: 11 x 3-hour lab classes, 2 field excursions Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1906 Life and Evolution (Advanced)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: 11 x 3-hour lab classes, 3 field excursions Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in an authentic urban biodiversity management research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in an authentic urban biodiversity management research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1996 Life and Evolution (SSP)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS
BIOL1007 From Molecules to Ecosystems
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us. You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
BIOL1907 From Molecules to Ecosystems (Advanced)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us. This unit of study has the same overall structure as BIOL1007 but the material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be a synthetic biology project investigating genetically engineered organisms. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
2000-level units of study
Core
BIOL2022 Biology Experimental Design and Analysis
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: BIOL1XXX or MBLG1XXX or ENVX1001 or ENVX1002 or DATA1X01 or MATH1XX5 or ENVI1003 Prohibitions: BIOL2922 or BIOL3006 or BIOL3906 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This unit provides foundational skills essential for doing research in biology and for critically judging the research of others. We consider how biology is practiced as a quantitative, experimental and theoretical science. We focus on the underlying principles and practical skills you need to explore questions and test hypotheses, particularly where background variation (error) is inherently high. In so doing, the unit provides you with an understanding of how biological research is designed, analysed and interpreted using statistics. Lectures focus on sound experimental and statistical principles, using examples in ecology and other fields of biology to demonstrate concepts. In the practical sessions, you will design and perform, analyse (using appropriate statistical tools) and interpret your own experiments to answer research questions in topics relevant to your particular interest. This unit of study provides a suitable foundation for senior biology units of study.
Textbooks
Recommended: Ruxton, G. and Colegrave, N. 2016. Experimental design for the life sciences. 4th Ed. Oxford University Press
BIOL2024 Ecology and Conservation
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL2924 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study examines the ecological principles driving the major ecosystems of the world and ecological processes behind the world's major conservation issues. It aims to develop in students the core foundations for an understanding of Ecology and its application in conservation. Lectures will focus on the ecology of the major terrestrial and marine biomes of the world. Application of ecological theory and methods to practical conservation problems will be integrated throughout the unit of study. Practical sessions will provide hands-on experience in ecological sampling and data handling to understand the ecology of marine and terrestrial environments, as well as ecological simulations to understand processes. This unit of study provides a suitable foundation for senior biology units of study.
Textbooks
Recommended: Essentials of Ecology 4th edition (2014). Townsend, CR, Begon, M, Harper, JL . John
BIOL2924 Ecology and Conservation (Advanced)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An annual average mark of at least 70 in the previous year Prohibitions: BIOL2024 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The content of BIOL2924 will be based on BIOL2024 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Recommended: Essentials of Ecology 4th edition (2014). Townsend, CR, Begon, M, Harper, JL . John
3000-level units of study
Minor Core
AVBS3004 Wildlife Conservation
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points from (AVBS2XXX or BIOL2XXX or GEGE2X01 or QBIO2XXX) Prohibitions: AVBS3003 or AVBS4003 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Day field trips may be included . Mode of delivery: Normal (lecture/lab/tutorial) day
With multiple pressures on earth's biodiversity, the field of Wildlife Conservation is increasing in importance, empowering decision makers to understand and protect wildlife and the ecosystems which support them. This unit of study explores the techniques and methods for undertaking conservation research, including population genetics and forensic analysis of eDNA, the complexity introduced when considering multiple stakeholders, and the use of the scientific method to inform wildlife conservation issues. You will investigate biodiversity surveys, species identification, forensics, phylogeography, population genetics and genetic management applied to wildlife conservation, and the socio-political and cultural issues which influence stakeholders. You will analyse current issues within wildlife conservation and articulate and acknowledge a variety of stakeholder views including Indigenous Australian perspectives, both orally and in written form. You will understand the processes involved in formulating an evidence-based management approach to contentious wildlife conservation issues, and how the scientific method can be leveraged to build a compelling conservation management plan.
BIOL3007 Ecology
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002 or AVBS2XXX or ENSC2001)] Prohibitions: BIOL3907 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This unit explores the dynamics of ecological systems, and considers the interactions between individual organisms and populations, organisms and the environment, and ecological processes. Lectures are grouped around four dominant themes: Interactions, Evolutionary Ecology, The Nature of Communities, and Conservation and Management. Emphasis is placed throughout on the importance of quantitative methods in ecology, including sound planning and experimental designs, and on the role of ecological science in the conservation, management, exploitation and control of populations. Relevant case studies and examples of ecological processes are drawn from marine, freshwater and terrestrial systems, with plants, animals, fungi and other life forms considered as required. Students will have some opportunity to undertake short term ecological projects, and to take part in discussions of important and emerging ideas in the ecological literature.
BIOL3907 Ecology (Advanced)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002 or AVBS2XXX or ENSC2001)] Prohibitions: BIOL3007 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This unit has the same objectives as BIOL3007 Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit of study participate in alternatives to some elements of the standard course and will be encouraged to pursue the objectives by more independent means in a series of research tutorials. Specific details of this unit of study and assessment will be announced in meetings with students in week 1 of semester 2. This unit of study may be taken as part of the BSc (Advanced) program.
Textbooks
As for BIOL3007