University of Sydney Handbooks - 2022 Archive

Download full 2022 archive Page archived at: Tue, 08 Nov 2022 23:43:12 +0000

Applied Medical Science

APPLIED MEDICAL SCIENCE

Applied Medical Science major

A major in Applied Medical Science requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units according to the following rules:
(a) 12 credit points of 2000-level core units or
(b) 12 credit points of 2000-level MEDS coded alternative core units for students in the Medical Science stream
(iii) 18 credit points of 3000-level core units
(iv) 6 credit points of 3000-level interdisciplinary project units

Applied Medical Science minor

A minor in Applied Medical Science requires 36 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units according to the following rules:
(a) 12 credit points of 2000-level core units or
(b) 12 credit points of 2000-level MEDS coded alternative units for students in the Medical Science stream
(iii) 12 credit points of 3000-level selective units

Units of study

The units of study are listed below.

1000-level units of study

Core
BIOL1007 From Molecules to Ecosystems

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us. You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
BIOL1907 From Molecules to Ecosystems (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us. This unit of study has the same overall structure as BIOL1007 but the material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be a synthetic biology project investigating genetically engineered organisms. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
CHEM1011 Fundamentals of Chemistry 1A

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see https://sydney.edu.au/students/bridging-courses.html).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1111 Chemistry 1A

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive January,Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round https://sydney.edu.au/students/bridging-courses.html).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)

2000-level units of study

Core
BCMB2001 Biochemistry and Molecular Biology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2901 or MEDS2003 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Then we will explore cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Our practicals, along with other guided and online learning sessions will introduce you to widely applied and cutting-edge tools that are essential for modern biochemistry and molecular biology. By the end of this unit, you will be equipped with foundational skills and knowledge to support your studies in the life and medical sciences.
Textbooks
Stryer Biochemistry 8th Edition ISBN-13:978-1-4641-2610-9
BCMB2901 Biochemistry and Molecular Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 or MEDS2003 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study, you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Then we will explore cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. The advanced laboratory component will provide students with an authentic research laboratory experience while in the theory component, current research topics will be presented in a problem-based format through tutorial sessions. This material will be assessed by creative student-centered activities supported by eLearning platforms.
Textbooks
Stryer Biochemistry 8th Edition ISBN-13:978-1-4641-2610-9
MIMI2002 Microbes, Infection and Immunity

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 6cp from (BIOL1XX7 or BIOL1XX8 or MEDS1X01 or BIOL1XX3 or MBLG1XX1) Prohibitions: MEDS2004 or BMED2404 or MIMI2902 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808 Assumed knowledge: Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Transmission, pathogenicity and immune response to microbes are key concepts for understanding infectious disease processes. In this unit of study you will establish a conceptual foundation and, using an integrated approach, explore selected case studies of infection from a body system of origin perspective. You will explore the characteristics of viral, bacterial, fungal and protist pathogens and their virulence mechanisms for establishment and progression of disease. Comprehensive consideration of host immune response and characteristic pathological changes to tissue that arise will then be considered. Upon completion of this unit, you will be able to explain microbial pathogenic processes of infection including: mechanisms for colonisation, invasion and damage to host tissue; the ways in which your immune system recognises and destroys invading microbes; how T cell response is activated and antibodies function. You will learn about pathogenesis, symptoms, current challenges of treatment including antibiotic resistance, control and vaccination strategies. You will develop a holistic perspective of infectious diseases. You will work collaboratively to solve challenging problems in Biomedical Sciences. Practical classes will investigate normal flora, host defences and case studies of medically important microbes with linkage to disease outcome. You will also obtain experience and understanding of modern experimental techniques in microbiology and immunopathology.
Textbooks
Willey, J., Sherwood, L., Woolverton, C., Prescott, L., 2017, Prescott's Microbiology, 10th Edition. McGraw-Hill Australia Pty Ltd, Sydney.
MIMI2902 Microbes, Infection and Immunity (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of 70 or above in (BIOL1XX7 or MBLG1XX1 or BIOL1XX8 or MEDS1X01 or BIOL1XX3) Prohibitions: MEDS2004 or BMED2404 or MIMI2002 or IMMU2101 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or BMED2807 or BMED2808 Assumed knowledge: Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Transmission, pathogenicity and immune response to microbes are key concepts for understanding infectious disease processes. In this unit you will establish a conceptual foundation and, using an integrated approach, explore selected infection case studies from a body system of origin perspective. You will explore characteristics of viral, bacterial, fungal and protist pathogens and their virulence mechanisms for establishment and progression of disease. Comprehensive consideration of host immune response and consequent characteristic pathological changes to tissue will be considered. Upon completion, you will be able to explain microbial pathogenic processes of infection including: mechanisms for colonisation, invasion and damage to host tissue; the ways your immune system recognises and destroys invading microbes; how T cell response is activated and antibodies function. You will learn about pathogenesis, symptoms, current challenges of treatment including antibiotic resistance, control and vaccination strategies. This advanced unit has the same overall structure as MIMI2002 but contains a unique science communication exercise in which you will actively participate in small group sessions and be assessed with a short video assignment. This advanced component explores how recent advances in microbiology, infection and immunity are communicated to the wider public and is based on recent publications with potential high impact for society.
Textbooks
Willey, J., Sherwood, L., Woolverton, C., Prescott, L., 2017, Prescott's Microbiology, 10th Edition. McGraw-Hill Australia Pty Ltd, Sydney.
Alternative core
MEDS2003 Biochemistry and Molecular Biology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 6p from (BIOL1XX7 or MBLG1XX1) and 6cp of (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 or BCMB2901 or BMED2804 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? What happens as a result of disease or genetic mutation? In this unit of study, you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Then we will explore cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Our practicals, along with other guided and online learning sessions will introduce you to widely applied and cutting-edge tools that are essential for modern biochemistry and molecular biology. By the end of this unit, you will be equipped with foundational skills and knowledge to support your studies in the medical and life sciences.
Textbooks
Canvas, ELN Peerwise Site, Blackboard LMS Textbook: Biochemistry - Berg, Tymoczko, Gatto, Stryer 8th Ed or higher Wikipedia
MEDS2004 Microbes, Infection and Immunity

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: BIOL1XX3 or BIOL1XX7 or BIOL1X08 or MEDS1X01 or MBLG1XX1 Prohibitions: MIMI2002 or MIMI2902 or MICR2021 or MICR2921 or MICR2022 or MICR2922 or IMMU2101 or BMED2404 or BMED2807 or BMED2808 Assumed knowledge: Human biology (BIOL1XX3 or BIOL1XX8 or MEDS1X01) and biological chemistry (CHEM1XX1 or CHEM1903) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Transmission, pathogenicity and the immune response to microbes are key concepts for understanding infectious disease processes. In this unit of study, you will establish a conceptual foundation and, using an integrated approach, explore selected case studies of infection from a body system of origin perspective. You will explore the characteristics of viral, bacterial, fungal and protist pathogens and their virulence mechanisms for establishment and progression of disease. Comprehensive consideration of the host immune response and characteristic pathological changes to tissue that arise will then be considered. Upon completion of this unit, you will be able to explain microbial pathogenic processes of infection including: mechanisms for colonisation, invasion and damage to host tissue; the ways in which your immune system recognises and destroys invading microbes; how the T cell response is activated and antibodies function. You will learn about pathogenesis, symptoms, current challenges of treatment including antibiotic resistance, control and vaccination strategies. You will develop a holistic perspective of infectious diseases. You will work collaboratively to solve challenging problems in Biomedical Sciences. Practical classes will investigate normal flora, host defences and case studies of medically important microbes with linkage to disease outcome. You will also obtain experience and understanding of modern experimental techniques in microbiology and immunopathology.
Textbooks
Learning resources will be available via the course Canvas site. Recommended textbooks: Willey, J., Sherwood, L., Woolverton, C., Prescott, L., 2017, Prescott's Microbiology, 10th Edition. McGraw-Hill Australia Pty Ltd, Sydney and Abbas, A., Lichtman, A., Pillai, S. 2016, Basic Immunology: Functions and disorders of the immune system, 5th Edition
(MEDS coded units of study are only available to students in the Medical Science stream).

3000-level units of study

Major core
AMED3001 Cancer

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3901 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: "you have cancer"? Initially you're probably consumed with questions like: "how did this happen?" and "will this cancer kill me?". In this unit, we will explore all aspects of the "cancer problem" from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire the skills to interpret and communicate observations and experimental findings related to the "cancer problem" to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system.
Textbooks
Recommended Textbook: 1.Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1.Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2.Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3901 Cancer (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3001 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: you have cancer? Initially you're probably consumed with questions like: how did this happen? and will this cancer kill me? In this unit, we will explore all aspects of the cancer problem from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire advanced skills to interpret and communicate observations and experimental findings related to the cancer problem to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system. This advanced version of Cancer has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest appearances from leading cancer experts. The nature of these components may vary from year to year.
Textbooks
Recommended Textbook: 1., Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1., Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2., Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3002 Interrogating Biomedical and Health Data

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Exploratory data analysis, sampling, simple linear regression, t-tests, confidence intervals and chi-squared goodness of fit tests, familiar with basic coding, basic linear algebra Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Biotechnological advances have given rise to an explosion of original and shared public data relevant to human health. These data, including the monitoring of expression levels for thousands of genes and proteins simultaneously, together with multiple databases on biological systems, now promise exciting, ground-breaking discoveries in complex diseases. Critical to these discoveries will be our ability to unravel and extract information from these data. In this unit, you will develop analytical skills required to work with data obtained in the medical and diagnostic sciences. You will explore clinical data using powerful, state of the art methods and tools. Using real data sets, you will be guided in the application of modern data science techniques to interrogate, analyse and represent the data, both graphically and numerically. By analysing your own real data, as well as that from large public resources you will learn and apply the methods needed to find information on the relationship between genes and disease. Leveraging expertise from multiple sources by working in team-based collaborative learning environments, you will develop knowledge and skills that will enable you to play an active role in finding meaningful solutions to difficult problems, creating an important impact on our lives.
AMED3003 Diagnostics and Biomarkers

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3903 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Adobe Illustrator is required. This is freely available on campus, or a 1 year license can be purchased.
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of, a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop your understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.
AMED3903 Diagnostics and Biomarkers (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3003 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop an advanced understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.
Interdisciplinary Project
AMED3888 Clinical Science

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3004 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Clinical science is a multidisciplinary science that combines the principles of experimental science with translational medicine. As a clinical scientist, you will have the capacity to interpret test results, isolate causes of disease, and ultimately develop new treatments that will save lives. Clinical Science will provide you with the breadth and depth of knowledge and skills that will give you a broad foundation of knowledge and open up a range of career opportunities in clinical sciences, including medical research, pharmaceutical development and clinical diagnostics. You will learn the language of the clinical world as you develop expertise in literature searching, study design, data interrogation and interpretation, evidence-based decision-making, and current knowledge in medical research. You will explore how discoveries in the medical sciences are translated into clinical practice, and pose your own clinical questions for investigation. You will study important medical conditions from the areas of infectious and genetic diseases and immunity. As part of the interdisciplinary capstone experience of your study in Clinical Science you will be emersed into clinical sectors of the hospital and associated departments . Consequently, at the end of this unit you will have experienced what it is like to work in interdisciplinary clinical teams, which is essential for both professional and research pathways in the future.
SCPU3001 Science Interdisciplinary Project

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive February,Intensive July,Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 96 credit points Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This interdisciplinary unit provides students with the opportunity to address complex problems identified by industry, community, and government organisations, and gain valuable experience in working across disciplinary boundaries. In collaboration with a major industry partner and an academic lead, students integrate their academic skills and knowledge by working in teams with students from a range of disciplinary backgrounds. This experience allows students to research, analyse and present solutions to a real-world problem, and to build on their interpersonal and transferable skills by engaging with and learning from industry experts and presenting their ideas and solutions to the industry partner.
Minor selective
AMED3001 Cancer

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3901 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: "you have cancer"? Initially you're probably consumed with questions like: "how did this happen?" and "will this cancer kill me?". In this unit, we will explore all aspects of the "cancer problem" from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire the skills to interpret and communicate observations and experimental findings related to the "cancer problem" to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system.
Textbooks
Recommended Textbook: 1.Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1.Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2.Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3901 Cancer (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3001 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
What does it mean when someone tells you: you have cancer? Initially you're probably consumed with questions like: how did this happen? and will this cancer kill me? In this unit, we will explore all aspects of the cancer problem from the underlying biomedical and environmental causes, through to emerging approaches to cancer diagnosis and treatment. You will integrate medical science knowledge from a diverse range of disciplines and apply this to the prevention, diagnosis and treatment of cancer both at the individual and community level. Together we will explore the epidemiology, aetiology and pathophysiology of cancer. You will be able to define problems and formulate solutions related to the study, prevention and treatment of cancer with consideration throughout for the economic, social and psychological costs of a disease that affects billions. Face-to-face and online learning activities will allow you to work effectively in individual and collaborative contexts. You will acquire advanced skills to interpret and communicate observations and experimental findings related to the cancer problem to diverse audiences. Upon completion, you will have developed the foundations that will allow you to follow a career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the health care system. This advanced version of Cancer has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest appearances from leading cancer experts. The nature of these components may vary from year to year.
Textbooks
Recommended Textbook: 1., Weinberg (2013) The Biology of Cancer. 2nd edition. Garland Science Recommended reading: 1., Hanahan and Weinberg (2000). The hallmarks of cancer. Cell 100, 57-70. 2., Hanahan and Weinberg (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74
AMED3002 Interrogating Biomedical and Health Data

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Exploratory data analysis, sampling, simple linear regression, t-tests, confidence intervals and chi-squared goodness of fit tests, familiar with basic coding, basic linear algebra Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Biotechnological advances have given rise to an explosion of original and shared public data relevant to human health. These data, including the monitoring of expression levels for thousands of genes and proteins simultaneously, together with multiple databases on biological systems, now promise exciting, ground-breaking discoveries in complex diseases. Critical to these discoveries will be our ability to unravel and extract information from these data. In this unit, you will develop analytical skills required to work with data obtained in the medical and diagnostic sciences. You will explore clinical data using powerful, state of the art methods and tools. Using real data sets, you will be guided in the application of modern data science techniques to interrogate, analyse and represent the data, both graphically and numerically. By analysing your own real data, as well as that from large public resources you will learn and apply the methods needed to find information on the relationship between genes and disease. Leveraging expertise from multiple sources by working in team-based collaborative learning environments, you will develop knowledge and skills that will enable you to play an active role in finding meaningful solutions to difficult problems, creating an important impact on our lives.
AMED3003 Diagnostics and Biomarkers

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2005 or PHSI2905 or PHSI2006 or PHSI2906 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003) or [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3903 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Adobe Illustrator is required. This is freely available on campus, or a 1 year license can be purchased.
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of, a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop your understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.
AMED3903 Diagnostics and Biomarkers (Advanced)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A mark of 70 or above in [12cp from (IMMU2101 or MEDS2004 or MIMI2002 or MIMI2902 or PHSI2007 or PHSI2907 or MEDS2001 or PCOL2011 or PCOL2021 or MEDS2002 or BCMB2001 or BCMB2901 or MEDS2003)] or a mark of 70 or above in [BMED2401 and 6cp from (BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406)] Prohibitions: AMED3003 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Diagnostic sciences have evolved at a rapid pace and provide the cornerstone of our health care system. Effective diagnostic assays enable the identification of people who have, or are at risk of a disease, and guide their treatment. Research into the pathophysiology of disease underpins the discovery of novel biomarkers and in turn, the development of revolutionary diagnostic assays that make use of state-of-the-art molecular and cellular methods. In this unit you will explore a diverse range of diagnostic tests and gain valuable practical experience in a number of core diagnostic methodologies, many of which are currently used in hospital laboratories. Together we will also cover the regulatory, social, and ethical aspects of the use of biomarkers and diagnostic tests and explore the pathways to their translation into clinical practice. By undertaking this unit, you will develop an advanced understanding of diagnostic assays and biomarkers and acquire the skills needed to embark on a career in diagnostic sciences.

4000-level units of study

The following unit of study will not run in 2021: AMED4001
AMED4001 Advanced Studies in Cancer Biology

This unit of study is not available in 2022

Credit points: 6 Teacher/Coordinator: A/Prof Scott Byrne Session: Semester 2 Classes: Online lecturettes, book club, workshops with experts and advanced practicals (~4-6h per week) Prerequisites: BCMB2001 or BCMB2901 or MEDS2003 Assumed knowledge: AMED3001 or AMED3901 Assessment: Attendance and participation (10%), development of online learning resources (20%), Research Proposal (25%), Practical Assessment (15%) and exam (30%) Mode of delivery: Normal (lecture/lab/tutorial) day
Progress in our ability to cure or delay cancer is rapidly accelerating. The prospects of patients with cancer have been revolutionised by the genetic, molecular and cellular study of cancers in individual patients. This research is also enabling a more sophisticated understanding of how sub-cellular processes and the many different types of cells in the body interact to support human life. Together we will look at the molecular and cellular origins of the behaviours of cancers: what drives accelerated cancer cell replication, their resistance to cell death and their ability to induce angiogenesis, local invasion and metastasis. We will examine genomic instability, dysregulated cellular metabolism and the role of inflammation and the immune system. We will analyse these behaviours and their relevance to cancer therapy. You will work independently and in groups in face-to-face and online learning activities. You will deepen your knowledge of molecular and cellular biology and hone the intellectual and practical skills required to equip you to participate in the latest developments to improve survival and health for all cancer patients. Upon completion, you will have developed the skills required to launch your career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the prevention, diagnosis and treatment of cancer.
Textbooks
Resources on the LMS + the following article, book and textbook: Hanahan and Weinberg (2011) Hallmarks of Cancer: The Next Generation. Cell 144 The Emperor of All Maladies: A Biography of Cancer by Siddhartha Mukherjee Robert A Weinberg. The Biology of Cancer, 2nd Edition