Unit of study descriptions
Master of Professional Engineering (Mechanical)
To qualify for the award of the Master of Professional Engineering in this specialisation, a candidate must complete 144 credit points, including core and elective units of study as listed below.
Core units
Year One
AMME9261 Fluid Mechanics 1
Credit points: 6 Teacher/Coordinator: Dr Agisilaos Kourmatzis Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prohibitions: AMME5200 Assumed knowledge: Students are expected to be familiar with first year basic maths: integral calculus, differential calculus and linear algebra. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit covers the fundamentals of fluid statics and fluid dynamics. At the end of this unit students will have: an understanding of the basic equations governing the statics and dynamics of fluids; the ability to analyze and determine the forces applied by a static fluid; the ability to analyse fluids in motion. The course will cover both inviscid and viscous fluid flow. The course will introduce the relevant parameters for fluid flow in internal engineering systems such as pipes and pumps and external systems such as flow over wings and airfoils. Course content will cover the basic concepts such as viscosity, density, continuum, pressure, force, buoyancy and acceleration; and more detailed methods including continuity, conservation of momentum, streamlines and potential flow theory, Bernoulli equation, Euler equation, Navier-Stokes equation. Experiments will introduce flow measuring devices and flow observation.
AMME9500 Engineering Dynamics
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prohibitions: AMME5500 Assumed knowledge: University level Maths and Physics, especially covering the area of Mechanics, and familiarity with the MATLAB programming environment. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study will focus on the principles governing the state of motion or rest of bodies under the influence of applied force and torque, according to classical mechanics. The course aims to teach students the fundamental principles of the kinematics and kinetics of systems of particles, rigid bodies, planar mechanisms and three-dimensional mechanisms, covering topics including kinematics in various coordinate systems, Newton's laws of motion, work and energy principles, impulse and momentum (linear and angular), gyroscopic motion and vibration. Students will develop skills in analysing and modelling dynamical systems, using both analytical methods and computer-based solutions using MATLAB. Students will develop skills in approximating the dynamic behaviour of real systems in engineering applications and an appreciation and understanding of the effect of approximations in the development and design of systems in real-world engineering tasks.
AMME9700 Instrumentation
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prohibitions: AMME5700 Assumed knowledge: Programming Skills, 1st Year maths skills Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to develop in students an understanding of the engineering measurements and instrumentation systems. The students will acquire an ability to make accurate and meaningful measurements. It will cover the general areas of electrical circuits and mechanical/electronic instrumentation for strain, force, pressure, moment, torque, displacement, velocity, acceleration, temperature and so on.
ENGG9801 Engineering Computing
Credit points: 6 Session: Semester 1,Summer Main Classes: Lectures, Tutorials Prohibitions: ENGG5801 OR ENGG1801 Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces students to solving engineering problems using computers. Students learn how to organize data to present and understand it better using a spreadsheet (Excel), and also how to instruct the computer exactly what to do to solve complex problems using programming (Matlab). Real engineering examples, applications and case-studies are given, and students are required to think creatively and solve problems using computer tools.
Matlab will cover three-quarters of the unit. The remaining one-quarter will be devoted to the use of Excel in engineering scenarios. Furthermore, cross integration between Matlab and Excel will also be highlighted.
No programming experience is required or assumed. Students are assumed to have a basic understanding of mathematics and logic, and very elementary computing skills.
Matlab will cover three-quarters of the unit. The remaining one-quarter will be devoted to the use of Excel in engineering scenarios. Furthermore, cross integration between Matlab and Excel will also be highlighted.
No programming experience is required or assumed. Students are assumed to have a basic understanding of mathematics and logic, and very elementary computing skills.
AMME9262 Thermal Engineering 1
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: AMME5200 Assumed knowledge: Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to teach the basic laws of thermodynamics and heat transfer. At the end of this unit students will have: an understanding of the basic laws of thermodynamics and heat transfer; The ability to analyse the thermodynamics of a simple open or closed engineering system. The basic knowledge to analyse and design 1D thermal circuits. Course content will include concepts of heat and work, properties of substances, first law of thermodynamics, control mass and control volume analysis, thermal efficiency, entropy, second law of thermodynamics, reversible and irreversible processes, isentropic efficiency, power and refrigeration cycles, heat transfer by conduction, convection and radiation, 1D thermal circuits and transient heat transfer.
AMME9301 Mechanics of Solids 1
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials Prohibitions: AMME5301 Assumed knowledge: Physics, statics, Differential Calculus, Linear Algebra, Integral Calculus and Modelling. Assessment: Through semester assessment (35%) and Final Exam (65%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to teach the fundamentals of analysing stress and deformation in elemental structures/components in aerospace, mechanical and biomedical engineering (bars, beams, frames, cell box beams and tubes) under simple and combined loading of tension, compression, bending and torsion. The vibration will also be addressed. At the end of this unit students will have gained knowledge of: equilibrium of deformable structures; basic concept of deformation compatibility; stress and strain in bars, beams and their structures subjected to tension, compression, bending, torsion and combined loading; statically determinate and indeterminate structures; energy methods for bar and beam structures; simple buckling; simple vibration; deformation of simple frames and cell box beams; simple two-dimensional stress and Morh`s circle; problem-based applications in aerospace, mechanical and biomedical engineering.
AMME9302 Materials 1
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: AMME5302 OR CIVL5501 Assessment: Through semester assessment (51%) and Final Exam (49%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is an introductory course in engineering materials. The unit aims to develop students' understanding of the structures, mechanical properties and manufacture of a range of engineering materials as well as how the mechanical properties relate to microstructure and forming and treatment methods. The unit has no prerequisite subject and is therefore intended for those with little or no previous background in engineering materials. However the unit does require students to take a significant degree of independent responsibility for developing their own background knowledge of materials and their properties. The electrical, magnetic, thermal and optical properties of materials are a critical need-to-know area where students are expected to do most of their learning by independent study.
MECH9400 Mechanical Design 1
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: MECH5400 Assumed knowledge: ENGG1801 AND ENGG1802. HSC Maths and HSC Physics Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Aim: For students to experience a realistic the design process and to develop good engineering skills.
Course Objectives: To develop an understanding of:
1. The need for and use of standard drawings in the communication and definition of parts and assemblies to AS1100.
2. Efficient use of a CAD package.
3. Creativity.
4. The design process from initial idea to finished product.
5. Methods used to analyse designs.
6. Appreciation and analysis of standard components.
7. An understanding of power transmission element
Course Objectives: To develop an understanding of:
1. The need for and use of standard drawings in the communication and definition of parts and assemblies to AS1100.
2. Efficient use of a CAD package.
3. Creativity.
4. The design process from initial idea to finished product.
5. Methods used to analyse designs.
6. Appreciation and analysis of standard components.
7. An understanding of power transmission element
Year Two
AMME9501 System Dynamics and Control
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: AMME9500 Prohibitions: AMME8501 Assumed knowledge: AMME5500 OR AMME9500. Students are assumed to have a good background knowledge in ordinary differential equations, Laplace transform methods, linear algebra and mathematical modeling of mechanical systems. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to allow students to develop an understanding of methods for modeling and controlling linear, time-invariant systems. Techniques examined will include the use of differential equations and frequency domain approaches to modeling of systems. This will allow students to examine the response of a system to changing inputs and to examine the influence of external stimuli such as disturbances on system behaviour. Students will also gain an understanding of how the responses of these mechanical systems can be altered to meet desired specifications and why this is important in many engineering problem domains.
The study of control systems engineering is of fundamental importance to most engineering disciplines, including Electrical, Mechanical, Mechatronic and Aerospace Engineering. Control systems are found in a broad range of applications within these disciplines, from aircraft and spacecraft to robots, automobiles, computers and process control systems. The concepts taught in this course introduce students to the mathematical foundations behind the modelling and control of linear, time-invariant dynamic systems. In particular, topics addressed in this course will include: Techniques for modelling mechanical systems and understanding their response to control inputs and disturbances (this will include the use of differential equations and frequency domain methods as well as tools such as Root Locus and Bode plots); Representation of systems in a feedback control system as well as techniques for determining what desired system performance specifications are achievable, practical and important when the system is under control; Theoretical and practical techniques that help engineers in designing control systems, and an examination of which technique is best in solving a given problem.
The study of control systems engineering is of fundamental importance to most engineering disciplines, including Electrical, Mechanical, Mechatronic and Aerospace Engineering. Control systems are found in a broad range of applications within these disciplines, from aircraft and spacecraft to robots, automobiles, computers and process control systems. The concepts taught in this course introduce students to the mathematical foundations behind the modelling and control of linear, time-invariant dynamic systems. In particular, topics addressed in this course will include: Techniques for modelling mechanical systems and understanding their response to control inputs and disturbances (this will include the use of differential equations and frequency domain methods as well as tools such as Root Locus and Bode plots); Representation of systems in a feedback control system as well as techniques for determining what desired system performance specifications are achievable, practical and important when the system is under control; Theoretical and practical techniques that help engineers in designing control systems, and an examination of which technique is best in solving a given problem.
MECH9261 Fluid Mechanics 2
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials, Project Work - in class Prerequisites: AMME9261 OR AMME9200 Prohibitions: MECH8261 Assumed knowledge: Linear Mathematics, Vector Calculus, Differential Equations and Fourier Series Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to provide students with a detailed understanding of the theory and practice of fluid mechanics in the context of mechanical engineering. At the end of this unit students will have the ability to critically assess and solve problems commonly found in fluid mechanics practice, such as sizing pumps and piping systems, designing channels, and determining the lift and drag characteristics of submerged bodies. Additionally, they will develop a structured and systematic approach to problem solving. Course content will include dimensionless analysis, Bernoulli equation, pipe flow, frictional losses, laminar and turbulent boundary layers, open channel flow and hydraulic jump, lift and drag, compressible flow and shock waves, turbomachinery.
MECH9362 Materials 2
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: (AMME9302 OR AMME5302) AND (AMME9301 OR AMME5301) Prohibitions: MECH8362 Assumed knowledge: Mechanics of solids: statics, stress, strain Assessment: Through semester assessment (45%) and Final Exam (55%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims for students to understand the relationship between properties of materials and their microstructures and to improve mechanical design based on knowledge of mechanics and properties of materials.
At the end of this unit students should have the capability to select proper materials for simple engineering design.
Course content will include: short-term and long-term mechanical properties; introductory fracture and fatigue mechanics, dislocations; polymers and polymer composite materials; ceramics and glasses; structure-property relationships; selection of materials in mechanical design.
At the end of this unit students should have the capability to select proper materials for simple engineering design.
Course content will include: short-term and long-term mechanical properties; introductory fracture and fatigue mechanics, dislocations; polymers and polymer composite materials; ceramics and glasses; structure-property relationships; selection of materials in mechanical design.
MECH9660 Manufacturing Engineering
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prerequisites: MECH9400 Prohibitions: MECH8660 Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
The unit aims to teach the fundamentals of manufacturing processes and systems in mechanical, mechatronic and biomedical engineering, including traditional and advanced manufacturing technologies.
This unit aims to develop the following attributes: to understand the fundamental principles of manufacturing technologies for the above mentioned engineering areas; to gain the ability to select existing manufacturing processes and systems for direct engineering applications; to develop ability to create innovative new manufacturing technologies for advanced industrial applications; to develop ability to invent new manufacturing systems.
At the end of this unit students will have a good understanding of the following: merits and advantages of individual manufacturing processes and systems; principles of developing new technologies; comprehensive applications and strategic selection of manufacturing processes and systems.
Course content will include:
CAD / CAM: An introduction into the use of CAD and manual CNC coding as separate tools combined with an introduction into the kinematics and structural requirements in the construction of a CNC machine.
Rapid Engineering: An introduction into the most current Rapid Engineering methods currently in use.
Manufacturing Processes: Common processes and their science (machining, casting, powder metallurgy, metal working, welding) and their relative merits and limitations.
This unit aims to develop the following attributes: to understand the fundamental principles of manufacturing technologies for the above mentioned engineering areas; to gain the ability to select existing manufacturing processes and systems for direct engineering applications; to develop ability to create innovative new manufacturing technologies for advanced industrial applications; to develop ability to invent new manufacturing systems.
At the end of this unit students will have a good understanding of the following: merits and advantages of individual manufacturing processes and systems; principles of developing new technologies; comprehensive applications and strategic selection of manufacturing processes and systems.
Course content will include:
CAD / CAM: An introduction into the use of CAD and manual CNC coding as separate tools combined with an introduction into the kinematics and structural requirements in the construction of a CNC machine.
Rapid Engineering: An introduction into the most current Rapid Engineering methods currently in use.
Manufacturing Processes: Common processes and their science (machining, casting, powder metallurgy, metal working, welding) and their relative merits and limitations.
MECH9260 Thermal Engineering 2
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prerequisites: AMME9200 OR AMME5200 OR AMME9262 Prohibitions: MECH8260 Assumed knowledge: Fundamentals of thermodynamics are needed to begin this more advanced course. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to develop an understanding of: 1) The principles of thermodynamics- energy, entropy and exergy balances- applied to pure substances, mixtures and combustion and the application of these principles to engineering processes, power and refrigeration systems. 2) The principles of heat transfer- conductive, convective, radiative heat transfer- in the context of a variety of physical situations and the application of these principles in order to design and size engineering equipment and analyse engineering processes.
Course content includes: 1) Thermodynamics- properties of matter, energy, entropy and exergy balances for closed and steady state flow systems, mixtures, mixing and separation, psychrometry and air-conditioning and combustion- stoichiometry, first and second law analysis of reacting systems. 2) Heat Transfer- conduction, thermal circuits, general conduction equation, conduction through cylindrical bodies and fins, heat exchangers, transient conduction including analytic solutions, forced convection and natural convection, boiling and radiation- spectrum, intensity, surface radiative properties, environmental radiation, solar radiation.
At the end of this unit students will be able to: 1) Thermodynamics- apply the principles of thermodynamics and heat transfer to engineering situations; have the ability to tackle and solve a range of problems involving thermodynamic cycles, devices such as compressors and turbines, mixtures, air conditioning, combustion. 2) Heat Transfer- have the ability to tackle and solve a range of heat transfer problems including heat exchangers, cooling by fluids, quenching, insulation and solar radiation.
Course content includes: 1) Thermodynamics- properties of matter, energy, entropy and exergy balances for closed and steady state flow systems, mixtures, mixing and separation, psychrometry and air-conditioning and combustion- stoichiometry, first and second law analysis of reacting systems. 2) Heat Transfer- conduction, thermal circuits, general conduction equation, conduction through cylindrical bodies and fins, heat exchangers, transient conduction including analytic solutions, forced convection and natural convection, boiling and radiation- spectrum, intensity, surface radiative properties, environmental radiation, solar radiation.
At the end of this unit students will be able to: 1) Thermodynamics- apply the principles of thermodynamics and heat transfer to engineering situations; have the ability to tackle and solve a range of problems involving thermodynamic cycles, devices such as compressors and turbines, mixtures, air conditioning, combustion. 2) Heat Transfer- have the ability to tackle and solve a range of heat transfer problems including heat exchangers, cooling by fluids, quenching, insulation and solar radiation.
MECH9361 Mechanics of Solids 2
Credit points: 6 Session: Semester 2 Classes: Tutorials, Lectures, Laboratories Prerequisites: AMME9301 OR AMME5301 Prohibitions: MECH8361 Assumed knowledge: Linear Mathematics, Vector Calculus, Differential Equations and Fourier Series Assessment: Through semester assessment (70%) and Final Exam (30%) Mode of delivery: Normal (lecture/lab/tutorial) day
The unit of study aims to: teach the fundamentals of analysing stress and deformation in a solid under complex loading associated with the elemental structures/components in aerospace, mechanical and biomedical engineering; develop the following attributes- understand the fundamental principles of solid mechanics and basic methods for stress and deformation analysis of a solid structure/element in the above mentioned engineering areas; gain the ability to analyse problems in terms of strength and deformation in relation to the design, manufacturing and maintenance of machines, structures, devices and elements in the above mentioned engineering areas.
At the end of this unit students will have a good understanding of the following: applicability of the theories and why so; how and why to do stress analysis; why we need equations of motion/equilibrium; how and why to do strain analysis; why we need compatibility equations; Hooke's law, plasticity and how to do elastic and plastic analysis; how and why to do mechanics modelling; how to describe boundary conditions for complex engineering problems; why and how to solve a mechanics model based on a practical problem; why and how to use energy methods for stress and deformation analysis; why and how to do stress concentration analysis and its relation to fracture and service life of a component/structure; how and why to do fundamental plastic deformation analysis; how and why the finite element method is introduced and used for stress and deformation analysis.
The students are expected to develop the ability of solving engineering problems by comprehensively using the skills attained above. The students will get familiar with finite element analysis as a research and analysis tool for various real-life problems.
At the end of this unit students will have a good understanding of the following: applicability of the theories and why so; how and why to do stress analysis; why we need equations of motion/equilibrium; how and why to do strain analysis; why we need compatibility equations; Hooke's law, plasticity and how to do elastic and plastic analysis; how and why to do mechanics modelling; how to describe boundary conditions for complex engineering problems; why and how to solve a mechanics model based on a practical problem; why and how to use energy methods for stress and deformation analysis; why and how to do stress concentration analysis and its relation to fracture and service life of a component/structure; how and why to do fundamental plastic deformation analysis; how and why the finite element method is introduced and used for stress and deformation analysis.
The students are expected to develop the ability of solving engineering problems by comprehensively using the skills attained above. The students will get familiar with finite element analysis as a research and analysis tool for various real-life problems.
Select 12 credit points from the Mechanical recommended electives block.
Year Three
AMME9601 Professional Engineering
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prohibitions: AMME5601 Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to create an awareness of issues surrounding the management of projects; impart knowledge resulting in a more global approach to the practice of engineering and engineering management; and provide a vehicle for improving communication skills (both written and oral). The course also aims, when taken together with other courses offered by the School, to substantially meet the requirement of the Institution of Engineers, Australia, for undergraduate training in management theory and Professional Engineering skills. On completion of this unit students should be able to: plan small projects and contribute effectively to planning of larger projects; work effectively in small teams; understand their role and expected conduct in the management of engineering projects; perform well in that role from the outset, with performance limited only by experience; prepare an interesting and relevant presentation on aspects of their work for their peers or senior managers; recognise the range of expertise they may need to call on in their role as an engineer working on a project (e.g. in safety and environmental fields); understand what the experts are saying, and be able to contribute effectively to that discussion.
ENGG5103 Safety Systems and Risk Analysis
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
To develop an understanding of principles of safety systems management and risk management, as applied to engineering systems. AS/NZS 4801:2001 and 4804:2001 form the foundation for teaching methods of developing, implementing, monitoring and improving a safety management system in an Engineering context.
Students will be exposed to a number of case studies related to safety systems and on completion of the course be able to develop a safety management plan for an Engineering facility that meets the requirements of NSW legislation and Australian standards for Occupational Health and Safety management systems.
Students are introduced to a variety of risk management approaches used by industry, and methods to quantify and estimate the consequences and probabilities of risks occurring, as applied to realistic industrial scenarios.
Students will be exposed to a number of case studies related to safety systems and on completion of the course be able to develop a safety management plan for an Engineering facility that meets the requirements of NSW legislation and Australian standards for Occupational Health and Safety management systems.
Students are introduced to a variety of risk management approaches used by industry, and methods to quantify and estimate the consequences and probabilities of risks occurring, as applied to realistic industrial scenarios.
ENGG5217 Practical Experience
Session: Intensive April,Intensive August,Intensive December,Intensive February,Intensive January,Intensive July,Intensive June,Intensive March,Intensive May,Intensive November,Intensive October,Intensive September Classes: Practical Experience Prohibitions: ENGP1000 OR ENGP2000 OR ENGP3000 OR ENGG4000 OR CHNG5205 OR AMME5010 Assessment: Through semester assessment (100%) Mode of delivery: Professional practice
Note: Students should have completed one year of their MPE program before enrolling in this unit.
The 3 year MPE requires students to obtain industrial work experience of twelve weeks duration (60 working days) or its equivalent towards satisfying the requirements for award of the degree. Students can undertake their work experience in the final year of the MPE program (Year 3). Students may have prior work in an Engineering field carried out on completion of their undergraduate degree accepted as meeting the requirements of this component.
Students must be exposed to professional engineering practice to enable them to develop an engineering approach and ethos, and to gain an appreciation of engineering ethics. and to gain an appreciation of engineering ethics.
The student is required to inform the Faculty of any work arrangements by emailing the Graduate School of Engineering and Information Technologies. Assessment in this unit is by the submission of a portfolio containing written reports on the involvement with industry. For details of the reporting requirements, go to the faculty's Practical Experience portfolio web site http://sydney.edu.au/engineering/practical-experience/index.shtml
Students must be exposed to professional engineering practice to enable them to develop an engineering approach and ethos, and to gain an appreciation of engineering ethics. and to gain an appreciation of engineering ethics.
The student is required to inform the Faculty of any work arrangements by emailing the Graduate School of Engineering and Information Technologies. Assessment in this unit is by the submission of a portfolio containing written reports on the involvement with industry. For details of the reporting requirements, go to the faculty's Practical Experience portfolio web site http://sydney.edu.au/engineering/practical-experience/index.shtml
Select at least 12 credit points from the Project or Research Pathway block.
Select up to 24 credit points from the Mechanical recommended electives block.
Elective units
Candidates must complete 36 credit points from the following Mechanical elective units of study.
It is recommended that students select units from the same subject area (either Thermofluids, Materials, Design & Manufacturing or Mechatronics)
Thermofluids
AMME5060 Advanced Computational Engineering
Credit points: 6 Session: Semester 2 Classes: lectures, tutorials Assessment: through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will cover advanced numerical and computational methods within an engineering context. The context will include parallel coding using MPI, computational architecture, advanced numerical methods including spectral methods, compact finite difference schemes, numerical dispersion and diffusion and efficient linear solvers. Students will develop to skills and confidence to write their own computational software. Applications in fluid and solid mechanics will be covered.
AMME5101 Energy and the Environment
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: MECH3260 OR MECH9260 or MECH8260 OR AERO3261 OR AERO9261 or AERO8261 Assumed knowledge: Students are expected to be familiar with the basic laws of thermodynamics, fluid mechanics and heat transfer Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is suitable for any engineering discipline student who is interested in developing an understanding of analysis and design in energy, power generation, environment and relevant economic issues. The aim is to acquaint students with the methods engineers use to design and evaluate the processes used for the conversion of energy into useful work. This course concentrates on thermal energy conversion. It also assesses and deals with the environmental consequences of energy conversion. At the end of this unit students will be able to critically analyse technical, economic and societal impacts of energy conversion systems.
A series of topics, each containing a series of lectures, will be covered in relation to energy. The course content will include: The Status of Energy Today; Energy for Electricity Generation; Nuclear Energy; Energy for Transportation; Future Energy Usage.
A series of topics, each containing a series of lectures, will be covered in relation to energy. The course content will include: The Status of Energy Today; Energy for Electricity Generation; Nuclear Energy; Energy for Transportation; Future Energy Usage.
AMME5202 Computational Fluid Dynamics
Credit points: 6 Session: Semester 1 Classes: Laboratories, Lectures, Tutorials Assumed knowledge: Partial differential equations; Finite difference methods; Taylor series; Basic fluid mechanics including pressure, velocity, boundary layers, separated and recirculating flows. Basic computer programming skills. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Objectives: To provide students with the necessary skills to use commercial Computational Fluid Dynamics packages and to carry out research in the area of Computational Fluid Dynamics. Expected outcomes: Students will have a good understanding of the basic theory of Computational Fluid Dynamics, including discretisation, accuracy and stability. They will be capable of writing a simple solver and using a sophisticated commercial CFD package.
Syllabus summary: A course of lectures, tutorials and laboratories designed to provide the student with the necessary tools for using a sophisticated commercial CFD package. A set of laboratory tasks will take the student through a series of increasingly complex flow simulations, requiring an understanding of the basic theory of computational fluid dynamics (CFD). The laboratory tasks will be complemented by a series of lectures in which the basic theory is covered, including: governing equations; finite difference methods, accuracy and stability for the advection/diffusion equation; direct and iterative solution techniques; solution of the full Navier-Stokes equations; turbulent flow; Cartesian tensors; turbulence models.
Syllabus summary: A course of lectures, tutorials and laboratories designed to provide the student with the necessary tools for using a sophisticated commercial CFD package. A set of laboratory tasks will take the student through a series of increasingly complex flow simulations, requiring an understanding of the basic theory of computational fluid dynamics (CFD). The laboratory tasks will be complemented by a series of lectures in which the basic theory is covered, including: governing equations; finite difference methods, accuracy and stability for the advection/diffusion equation; direct and iterative solution techniques; solution of the full Navier-Stokes equations; turbulent flow; Cartesian tensors; turbulence models.
AMME5271 Computational Nanotechnology
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials Assumed knowledge: Understanding of basic principles of Newtonian mechanics, physics and chemistry, fluid mechanics and solid mechanics. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This course introduces atomistic computational techniques used in modern engineering to understand phenomena and predict material properties, behaviour, structure and interactions at nano-scale. The advancement of nanotechnology and manipulation of matter at the molecular level have provided ways for developing new materials with desired properties. The miniaturisation at the nanometre scale requires an understanding of material behaviour which could be much different from that of the bulk. Computational nanotechnology plays a growingly important role in understanding mechanical properties at such a small scale. The aim is to demonstrate how atomistic level simulations can be used to predict the properties of matter under various conditions of load, deformation and flow. The course covers areas mainly related to fluid as well as solid properties, whereas, the methodologies learned can be applied to diverse areas in nanotechnology such as, liquid-solid interfaces, surface engineering, nanorheology, nanotribology and biological systems. This is a course with a modern perspective for engineers who wish to keep abreast with advanced computational tools for material characterisation at the atomic scale.
AMME5292 Advanced Fluid Dynamics
Credit points: 6 Session: Semester 1 Classes: lectures, tutorials Prerequisites: MECH3261 OR MECH9261 OR CIVL3612 OR CIVL9612 OR AERO3260 OR AERO9260 Assessment: through semester assessment (65%), final exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to cover advanced concepts in fluid dynamics, focusing particularly on turbulent flows, optical and laser based experimentation, and applied fluid dynamics in the context of engineering design. Specific topics to be covered will be: instability and turbulence, Reynolds decomposition, the Kolmogorov hypotheses, laser-based fluid flow measurement, and applied concepts such as multiphase flows, environmental flows, and biomedical flows. The project component of the unit will give students the opportunity to work on an advanced topical research or practical problem in fluid dynamics.
ENGG5202 Sustainable Design, Eng and Mgt
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Assumed knowledge: General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics Assessment: Through semester assessment (70%) and Final Exam (30%) Mode of delivery: Normal (lecture/lab/tutorial) day
The aim of this unit of study is to give students an insight and understanding of the environmental and sustainability challenges that Australia and the planet are facing and how these have given rise to the practice of Sustainable Design, Engineering and Management. The objective of this course is to provide a comprehensive overview of the nature and causes of the major environmental problems facing our planet, with a particular focus on energy and water, and how engineering is addressing these challenges.
MECH5255 Air Conditioning and Refrigeration
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials Prerequisites: MECH3260 OR MECH9260 or MECH8260 Prohibitions: MECH4255 Assumed knowledge: Students are expected to be familiar with the basic laws of thermodynamics, fluid mechanics and heat transfer. Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study develops an advanced knowledge of air conditioning systems and refrigeration applications. At the completion of this unit students will be able to determine thermal loads on structures and design an air conditioning or refrigeration system with attention to comfort, control, air distribution and energy consumption. Course content will include: applied psychrometrics, air conditioning systems, design principles, comfort in the built environment, cooling load calculations, heating load calculations, introduction and use of computer-based load estimation packages software, air distribution, fans, ducts, air conditioning controls, advanced refrigeration cycles, evaporators, condensers, cooling towers, compressors, pumps, throttling devices, piping, refrigerants, control, refrigeration equipment, simulation of refrigeration systems, food refrigeration and industrial applications; Use of CFD packages as tools to simulate flows in building and to optimise air conditioning design, energy estimation methods and software, energy evaluation and management in the built environment. Use of experimental air conditioning systems to test for thermal balances and compare with simulations.
MECH5265 Combustion
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials Prerequisites: (MECH3260 AND MECH3261) OR MECH9260 or MECH8260 Assumed knowledge: Students are expected to be familiar with the basic laws of thermodynamics, fluid mechanics and heat transfer. Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to teach the basic principles of combustion highlighting the role of chemical kinetics, fluid mechanics, and molecular transport in determining the structure of flames. Students will become familiar with laminar and turbulent combustion of gaseous and liquid fuels including the formation of pollutants. They will also be briefly introduced to various applications such as internal combustion engines, gas turbines, furnaces and fires.
This unit will cover equilibrium compositions, flammability limits, simple chemically reacting systems, detailed chemical kinetics, and the basic theory underlying laminar and turbulent combustion for both premixed and non-premixed cases. There will be an introduction to droplet combustion, the concept of mixture fraction for non-premixed flames, combustion in engines and gas turbines as well as the formation of pollutants. Fire ignition, growth and spread will also be covered with respect to safety in buildings including the hazards related to the formation of smoke and toxic products.
This unit will cover equilibrium compositions, flammability limits, simple chemically reacting systems, detailed chemical kinetics, and the basic theory underlying laminar and turbulent combustion for both premixed and non-premixed cases. There will be an introduction to droplet combustion, the concept of mixture fraction for non-premixed flames, combustion in engines and gas turbines as well as the formation of pollutants. Fire ignition, growth and spread will also be covered with respect to safety in buildings including the hazards related to the formation of smoke and toxic products.
MECH5275 Renewable Energy
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials Prerequisites: (MECH3260 AND MECH3261) OR (AERO3260 AND AERO3261) OR (MECH9260 AND MECH9261) OR (MECH8260 and MECH8261) OR (AERO9260 AND AERO9261) OR (AERO8260 and AERO8261). Students claiming to have prerequisite knowledge based on study at other institutions must contact the unit of study coordinator before enrolling in this unit and may be required to sit a pre-exam to demonstrate that they have the necessary knowledge and skills to undertake this advanced level unit. Assumed knowledge: The student will need a sound background in advanced level fluid mechanics, thermodynamics and heat transfer. In particular, students should be able to analyse fluid flow in turbomachinery; perform first and second law thermodynamic analysis of energy conversion systems, including chemically reacting systems; and perform advanced level calculations of conductive and convective and radiative heat transfer, including radiative spectral analysis. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit aims to develop understanding of the engineering design and analysis of different devices and technologies for generating power from renewable sources including: solar, wind, wave, tidal, ocean thermal, geothermal, hydro-electric, and biofuels; to understand the environmental, operational and economic issues associated with each of these technologies. At the end of this unit students will be able to perform in depth technical analysis of different types of renewable energy generation devices using the principles of fluid mechanics, thermodynamics and heat transfer. Students will be able to describe the environmental, economic and operational issues associated with these devices.
Materials
AERO9301 Applied Finite Element Analysis
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: AERO9360 or AERO8360 or MECH9361 or MECH8361 Assumed knowledge: BE in area of Aerospace Engineering or related Engineering field. Assessment: Through semester assessment (55%) and Final Exam (45%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to teach fundamentals of modern numerical and analytical techniques for evaluating stresses, strains, deformations and strengths of representative aerospace structures. In particular the focus is on developing an understanding of: Fundamental concepts and formulations of the finite element methods for basic structural analysis; Elements for typical aerospace structures- such as beams/frames, plates/shells, and their applications and limitations; Finite element techniques for various types of problems pertinent to aerospace structures; and developing hands-on experience of using selected commercial finite element analysis program.
At the end of this unit of study the following will have been covered: Introduction to Finite Element Method for modern structural and stress analysis; One-dimensional rod elements; Generalization of FEM for elasticity; Two- and three-dimensional trusses; FEA for beams and frames in 2D and 3D; Two-dimensional problems using constant strain triangular elements; The two-dimensional isoparametric elements; Plates and shells elements and their applications; FEA for axisymmetric shells and pressure vessels, shells of revolution; FEA for axisymmetric solids subjected to axi-symmetric loading; FEA for structural dynamics, eigenvalue analysis, modal response, transient response; Finite element analysis for stress stiffening and buckling of beams, plates and shells; Three-dimensional problems in stress analysis; Extensions to the element library, higher order elements, special elements; Constraints; FEA modeling strategy; FEA for heat conduction; FEA for non-linear material and geometric analysis.
At the end of this unit of study the following will have been covered: Introduction to Finite Element Method for modern structural and stress analysis; One-dimensional rod elements; Generalization of FEM for elasticity; Two- and three-dimensional trusses; FEA for beams and frames in 2D and 3D; Two-dimensional problems using constant strain triangular elements; The two-dimensional isoparametric elements; Plates and shells elements and their applications; FEA for axisymmetric shells and pressure vessels, shells of revolution; FEA for axisymmetric solids subjected to axi-symmetric loading; FEA for structural dynamics, eigenvalue analysis, modal response, transient response; Finite element analysis for stress stiffening and buckling of beams, plates and shells; Three-dimensional problems in stress analysis; Extensions to the element library, higher order elements, special elements; Constraints; FEA modeling strategy; FEA for heat conduction; FEA for non-linear material and geometric analysis.
AMME5271 Computational Nanotechnology
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials Assumed knowledge: Understanding of basic principles of Newtonian mechanics, physics and chemistry, fluid mechanics and solid mechanics. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This course introduces atomistic computational techniques used in modern engineering to understand phenomena and predict material properties, behaviour, structure and interactions at nano-scale. The advancement of nanotechnology and manipulation of matter at the molecular level have provided ways for developing new materials with desired properties. The miniaturisation at the nanometre scale requires an understanding of material behaviour which could be much different from that of the bulk. Computational nanotechnology plays a growingly important role in understanding mechanical properties at such a small scale. The aim is to demonstrate how atomistic level simulations can be used to predict the properties of matter under various conditions of load, deformation and flow. The course covers areas mainly related to fluid as well as solid properties, whereas, the methodologies learned can be applied to diverse areas in nanotechnology such as, liquid-solid interfaces, surface engineering, nanorheology, nanotribology and biological systems. This is a course with a modern perspective for engineers who wish to keep abreast with advanced computational tools for material characterisation at the atomic scale.
MECH5304 Materials Failure
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials, Laboratories, Presentation Prerequisites: (MECH9361 OR MECH3361 or MECH8361) AND (MECH9362 or MECH8362 OR MECH3362) Assumed knowledge: Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Develop advanced knowledge and skills in diagnostic analyses of materials failure using advanced techniques; enhance students' ability in handling complex engineering cases using interdisciplinary technologies; and provide students an opportunity to understand project research.
MECH5305 Smart Materials
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prerequisites: (AMME9301 OR AMME2301) AND (AMME9302 OR AMME2302 OR AMME1362) Assumed knowledge: Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Develop an essential understanding of structure-property relationship of smart materials, as well as their applications in practical applications; develop student's capability to design functional structures using smart materials; and provide students an opportunity to learn the new knowledge through project approaches.
MECH5310 Advanced Engineering Materials
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prerequisites: MECH3362 OR MECH9362 or MECH8362 Prohibitions: MECH4310 Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
To understand (a) how to define the relationship between properties and microstructures of advanced engineering materials, (b) how to improve mechanical design with the knowledge of mechanics and properties of materials, and (c) how to conduct failure diagnosis of engineering materials.
MECH5416 Advanced Design and Analysis
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: (AMME2301 OR AMME9301) AND (AMME2500 OR AMME9500) AND (MECH2400 OR MECH9400) Prohibitions: MECH4460 Assumed knowledge: ENGG1802 - Eng Mechanics, balance of forces and moments; AMME2301 - Mechanics of Solids, 2 and 3 dimensional stress and strain; AMME2500 - Engineering Dynamics - dynamic forces and moments; MECH2400 - Mechanical Design 1, approach to design problems and report writing, and preparation of engineering drawing; MECH3460 - Mechanical design 2, means of applying fatigue analysis to a wide range of machine components Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This UoS utilises assumed theoretical knowledge and skills to elucidate the stresses and strains that exit in the different categories of machine parts. It sets out to make the students familiar with the simplifications that are applied to arrive at the analytic expressions commonly used to analyse each individual categories parts. These simplifications usually begin by assuming that only particular types of loads are carried by teh parts in that category. The resulting analyses provide approximations to the actual stresses. It is possible to have different degrees of simplifications, requiring more or less work, giving better or poorer approximations. Should a part be used to carry loads that were not allowed for in the traditional method then some more appropriate method must be found or developed. An important aspect is to make the student practiced in a range of modern concepts, techniques and tools, and to be made aware of their strengths and limitations.
This UoS teaches the student how to recognise where and how their theoretical skills can be applied to the practical situations that they may encounter in this field of design.
Options may be provided in the choice of design assignments. Biomedical engineering and vehicle design problems may be provided as options to more general machine design problems.
This UoS teaches the student how to recognise where and how their theoretical skills can be applied to the practical situations that they may encounter in this field of design.
Options may be provided in the choice of design assignments. Biomedical engineering and vehicle design problems may be provided as options to more general machine design problems.
Design and Manufacturing
AERO9301 Applied Finite Element Analysis
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: AERO9360 or AERO8360 or MECH9361 or MECH8361 Assumed knowledge: BE in area of Aerospace Engineering or related Engineering field. Assessment: Through semester assessment (55%) and Final Exam (45%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to teach fundamentals of modern numerical and analytical techniques for evaluating stresses, strains, deformations and strengths of representative aerospace structures. In particular the focus is on developing an understanding of: Fundamental concepts and formulations of the finite element methods for basic structural analysis; Elements for typical aerospace structures- such as beams/frames, plates/shells, and their applications and limitations; Finite element techniques for various types of problems pertinent to aerospace structures; and developing hands-on experience of using selected commercial finite element analysis program.
At the end of this unit of study the following will have been covered: Introduction to Finite Element Method for modern structural and stress analysis; One-dimensional rod elements; Generalization of FEM for elasticity; Two- and three-dimensional trusses; FEA for beams and frames in 2D and 3D; Two-dimensional problems using constant strain triangular elements; The two-dimensional isoparametric elements; Plates and shells elements and their applications; FEA for axisymmetric shells and pressure vessels, shells of revolution; FEA for axisymmetric solids subjected to axi-symmetric loading; FEA for structural dynamics, eigenvalue analysis, modal response, transient response; Finite element analysis for stress stiffening and buckling of beams, plates and shells; Three-dimensional problems in stress analysis; Extensions to the element library, higher order elements, special elements; Constraints; FEA modeling strategy; FEA for heat conduction; FEA for non-linear material and geometric analysis.
At the end of this unit of study the following will have been covered: Introduction to Finite Element Method for modern structural and stress analysis; One-dimensional rod elements; Generalization of FEM for elasticity; Two- and three-dimensional trusses; FEA for beams and frames in 2D and 3D; Two-dimensional problems using constant strain triangular elements; The two-dimensional isoparametric elements; Plates and shells elements and their applications; FEA for axisymmetric shells and pressure vessels, shells of revolution; FEA for axisymmetric solids subjected to axi-symmetric loading; FEA for structural dynamics, eigenvalue analysis, modal response, transient response; Finite element analysis for stress stiffening and buckling of beams, plates and shells; Three-dimensional problems in stress analysis; Extensions to the element library, higher order elements, special elements; Constraints; FEA modeling strategy; FEA for heat conduction; FEA for non-linear material and geometric analysis.
AMME5105 Risk Management Analysis
Credit points: 6 Session: Semester 1 Classes: Workgroup Assessment: through semester assessment (60%) and final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Syllabus covers methods involved in quantifying and measuring risk. Risk measurement techniques; Risk factors; Linear and nonlinear risks; Volatility; Scenario analysis; Stress testing; Value at risk (VAR) frameworks and their limitations. Comparison will be made to real word outcomes using case studies. The handling of "unknown unknowns" and how to incorporate these into a risk analysis will be investigated. An introduction to common financial instruments will be presented.
AMME5310 Engineering Tribology
Credit points: 6 Session: Semester 1 Classes: Lectures, Laboratories, Tutorials, Seminars Assumed knowledge: (AMME2302 OR AMME9302) AND (AMME2301 OR AMME9301) AND (MECH3261 OR MECH9261 or MECH8261) Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The aim is to teach students in the undergraduate and postgraduate levels basic concepts about friction, lubrication and wear applicable to design and operation of mechanical systems used in engineering, industrial, and modern applications. Examples of these systems are lubrication of internal combustion engines, gearboxes, artificial hip/knee joints, and micro/nano electromechanical systems.
AMME5510 Vibration and Acoustics
Credit points: 6 Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prerequisites: (AMME2301 OR AMME9301) AND (AMME2200 OR AMME2261 OR AMME9261) AND (AMME2500 OR AMME9500) Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study should prepare the student to be able to undertake vibration and acoustic measurement calculations for industry design situations.
The unit aims to introduce a number of new concepts required for analysis of vibrations and acoustics. The response of structure under different dynamic forces, including human and aerodynamic, will be investigated. A number of hands-on experiments will be performed to allow an understanding of the concepts and applicability.
The acoustics component will include: basic acoustics theory, sound generation and propagation, impedance, absorbing materials, industrial noise sources, isolation methods of noise control, enclosures, instrumentation and measurement, frequency analysis, noise regulations and computational acoustics.
The unit aims to introduce a number of new concepts required for analysis of vibrations and acoustics. The response of structure under different dynamic forces, including human and aerodynamic, will be investigated. A number of hands-on experiments will be performed to allow an understanding of the concepts and applicability.
The acoustics component will include: basic acoustics theory, sound generation and propagation, impedance, absorbing materials, industrial noise sources, isolation methods of noise control, enclosures, instrumentation and measurement, frequency analysis, noise regulations and computational acoustics.
AMME5902 Computer Aided Manufacturing
Credit points: 6 Session: Semester 2 Classes: Project Work - in class, Lectures, Tutorials, Laboratories, Seminar Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The aim of this course is to enhance the student's manufacturing engineering skills in the CAD/CAM area. The course focuses on CNC milling as a manufacturing automation process applied to a project. The management, planning and marketing of a typical engineering project are also discussed.
Through integrated project-based learning and hands-on-machine training, you will learn: How to successfully complete a CAD/CAM and CNC mill based project; Manufacturing management and system skills, such as product planning, manufacturing sequence, time and cost; The science in designing and selecting a manufacturing method; How to effectively present your ideas and outcomes using oral and report based methods.
It is expected that through your hard work in the semester, you will find: Enhanced learning by real-world problems; Improved comprehensive skill in manufacturing design.
Through integrated project-based learning and hands-on-machine training, you will learn: How to successfully complete a CAD/CAM and CNC mill based project; Manufacturing management and system skills, such as product planning, manufacturing sequence, time and cost; The science in designing and selecting a manufacturing method; How to effectively present your ideas and outcomes using oral and report based methods.
It is expected that through your hard work in the semester, you will find: Enhanced learning by real-world problems; Improved comprehensive skill in manufacturing design.
AMME5912 Crash Analysis and Design
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Assumed knowledge: Computer Aided Drafting, Basic FEA principles and Solid Mechanics Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The objective of the course is to give students skills in the area of highly non-linear finite element analysis. Major topics covered include CAD, Implicit / explicit codes, Wire frame geometry, Elemental Theory, Materials, Pre-processing using ETA-PreSys, Contact, LS-Dyna, using NCAC FEM models, Modeling fasteners and the interaction between solids and fluids. Material covered in lectures is reinforced through independent research, assignments, quizzes and a major capstone project. The capstone project involves the development of an approved crash scenario.
CSYS5010 Introduction to Complex Systems
Credit points: 6 Session: Semester 1,Semester 2 Classes: Lectures, Laboratories Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Globalisation, rapid technological advances, the development of integrated and distributed systems, cross-disciplinary technical collaboration, and the emergence of "evolved" (as opposed to designed) systems are some of the reasons why many systems have begun to be described as complex systems in recent times. Complex technological, biological, socio-economic and socio-ecological systems (power grids, communication and transport systems, food webs, megaprojects, and interdependent civil infrastructure) are composed of large numbers of diverse interacting parts and exhibit self-organisation and/or emergent behaviour. This unit will introduce the basic concepts of "complex systems theory", and focus on methods for the quantitative analysis and modelling of collective emergent phenomena, using diverse computational approaches such as agent-based modelling and simulation, cellular automata, bio-inspired algorithms, and game theory. Students will gain theoretical knowledge of complex adaptive systems, coupled with practical skills in computational simulation and forecasting using a range of modern toolkits.
ENGG5203 Quality Engineering and Management
Credit points: 6 Session: Semester 2 Classes: Presentation, Project Work - in class, Project Work - own time Assumed knowledge: First degree in Engineering or a related discipline Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This subject is designed to support Engineers in the implementation of engineering tasks in the workplace. It addresses the use of quality control and management as well as systems assurance processes. It is designed to enable engineers entering practice from other related disciplines or with overseas qualifications to do so in a safe and effective way. The study program will include management of quality in research, design and delivery of engineering works and investigation, as well as of safe work practices and systems assurance.
MECH5416 Advanced Design and Analysis
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: (AMME2301 OR AMME9301) AND (AMME2500 OR AMME9500) AND (MECH2400 OR MECH9400) Prohibitions: MECH4460 Assumed knowledge: ENGG1802 - Eng Mechanics, balance of forces and moments; AMME2301 - Mechanics of Solids, 2 and 3 dimensional stress and strain; AMME2500 - Engineering Dynamics - dynamic forces and moments; MECH2400 - Mechanical Design 1, approach to design problems and report writing, and preparation of engineering drawing; MECH3460 - Mechanical design 2, means of applying fatigue analysis to a wide range of machine components Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This UoS utilises assumed theoretical knowledge and skills to elucidate the stresses and strains that exit in the different categories of machine parts. It sets out to make the students familiar with the simplifications that are applied to arrive at the analytic expressions commonly used to analyse each individual categories parts. These simplifications usually begin by assuming that only particular types of loads are carried by teh parts in that category. The resulting analyses provide approximations to the actual stresses. It is possible to have different degrees of simplifications, requiring more or less work, giving better or poorer approximations. Should a part be used to carry loads that were not allowed for in the traditional method then some more appropriate method must be found or developed. An important aspect is to make the student practiced in a range of modern concepts, techniques and tools, and to be made aware of their strengths and limitations.
This UoS teaches the student how to recognise where and how their theoretical skills can be applied to the practical situations that they may encounter in this field of design.
Options may be provided in the choice of design assignments. Biomedical engineering and vehicle design problems may be provided as options to more general machine design problems.
This UoS teaches the student how to recognise where and how their theoretical skills can be applied to the practical situations that they may encounter in this field of design.
Options may be provided in the choice of design assignments. Biomedical engineering and vehicle design problems may be provided as options to more general machine design problems.
Mechatronics
AERO9760 Spacecraft and Satellite Design
Credit points: 6 Session: Semester 1,Semester 2 Classes: Lectures, Project work - in class Prohibitions: AERO5760 Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This course aims to introduce the students to the engineering aspects of spacecraft and mission design, covering the space environment and spacecraft sub-systems, including thermal control, power systems, attitude decision and control system, tracking, telemetry and telecommand, and on-board data handling.
AMME5520 Advanced Control and Optimisation
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials, Research Prerequisites: AMME3500 OR AMME9501 or AMME8501 Assumed knowledge: Strong understanding of feedback control systems, specifically in the area of system modelling and control design in the frequency domain. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces engineering design via optimisation, i. e. finding the "best possible" solution to a particular problem. For example, an autonomous vehicle must find the fastest route between two locations over a road network; a biomedical sensing device must compute the most accurate estimate of important physiological parameters from noise-corrupted measurements; a feedback control system must stabilise and control a multivariable dynamical system (such as an aircraft) in an optimal fashion. The student will learn how to formulate a design in terms of a "cost function", when it is possible to find the "best" design via minimization of this "cost", and how to do so. The course will introduce widely-used optimisation frameworks including linear and quadratic programming (LP and QP), dynamic programming (DP), path planning with Dijkstra's algorithm, A*, and probabilistic roadmaps (PRMs), state estimation via Kalman filters, and control via the linear quadratic regulator (LQR) and Model Predictive Control (MPC). There will be constant emphasis on connections to real-world engineering problems in control, robotics, aerospace, biomedical engineering, and manufacturing.
AMME5902 Computer Aided Manufacturing
Credit points: 6 Session: Semester 2 Classes: Project Work - in class, Lectures, Tutorials, Laboratories, Seminar Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The aim of this course is to enhance the student's manufacturing engineering skills in the CAD/CAM area. The course focuses on CNC milling as a manufacturing automation process applied to a project. The management, planning and marketing of a typical engineering project are also discussed.
Through integrated project-based learning and hands-on-machine training, you will learn: How to successfully complete a CAD/CAM and CNC mill based project; Manufacturing management and system skills, such as product planning, manufacturing sequence, time and cost; The science in designing and selecting a manufacturing method; How to effectively present your ideas and outcomes using oral and report based methods.
It is expected that through your hard work in the semester, you will find: Enhanced learning by real-world problems; Improved comprehensive skill in manufacturing design.
Through integrated project-based learning and hands-on-machine training, you will learn: How to successfully complete a CAD/CAM and CNC mill based project; Manufacturing management and system skills, such as product planning, manufacturing sequence, time and cost; The science in designing and selecting a manufacturing method; How to effectively present your ideas and outcomes using oral and report based methods.
It is expected that through your hard work in the semester, you will find: Enhanced learning by real-world problems; Improved comprehensive skill in manufacturing design.
MECH5416 Advanced Design and Analysis
Credit points: 6 Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: (AMME2301 OR AMME9301) AND (AMME2500 OR AMME9500) AND (MECH2400 OR MECH9400) Prohibitions: MECH4460 Assumed knowledge: ENGG1802 - Eng Mechanics, balance of forces and moments; AMME2301 - Mechanics of Solids, 2 and 3 dimensional stress and strain; AMME2500 - Engineering Dynamics - dynamic forces and moments; MECH2400 - Mechanical Design 1, approach to design problems and report writing, and preparation of engineering drawing; MECH3460 - Mechanical design 2, means of applying fatigue analysis to a wide range of machine components Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This UoS utilises assumed theoretical knowledge and skills to elucidate the stresses and strains that exit in the different categories of machine parts. It sets out to make the students familiar with the simplifications that are applied to arrive at the analytic expressions commonly used to analyse each individual categories parts. These simplifications usually begin by assuming that only particular types of loads are carried by teh parts in that category. The resulting analyses provide approximations to the actual stresses. It is possible to have different degrees of simplifications, requiring more or less work, giving better or poorer approximations. Should a part be used to carry loads that were not allowed for in the traditional method then some more appropriate method must be found or developed. An important aspect is to make the student practiced in a range of modern concepts, techniques and tools, and to be made aware of their strengths and limitations.
This UoS teaches the student how to recognise where and how their theoretical skills can be applied to the practical situations that they may encounter in this field of design.
Options may be provided in the choice of design assignments. Biomedical engineering and vehicle design problems may be provided as options to more general machine design problems.
This UoS teaches the student how to recognise where and how their theoretical skills can be applied to the practical situations that they may encounter in this field of design.
Options may be provided in the choice of design assignments. Biomedical engineering and vehicle design problems may be provided as options to more general machine design problems.
MECH5720 Sensors and Signals
Credit points: 6 Session: Semester 2 Classes: Lectures, Project Work - own time, Laboratories, Tutorials Prerequisites: MTRX3700 Prohibitions: MECH4720 Assumed knowledge: Strong MATLAB skills Assessment: Through semester assessment (65%) and Final Exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) day
Syllabus Summary: This course starts by providing a background to the signals and transforms required to understand modern sensors. It goes on to provide an overview of the workings of typical active sensors (Radar, Lidar and Sonar). It provides insight into basic sensing methods as well as aspects of interfacing and signal processing. It includes both background material and a number of case studies.
The course covers the following topics:
a) SIGNALS: Convolution, The Fourier Transform, Modulation (FM, AM, FSK, PSK etc), Frequency shifting (mixing)
b) PASSIVE SENSORS: Infrared Radiometers, Imaging Infrared, Passive Microwave Imaging, Visible Imaging and Image Intensifiers
c) ACTIVE SENSORS THE BASICS: Operational Principles, Time of flight (TOF) Measurement and Imaging of Radar, Lidar and Sonar, Radio Tags and Transponders, Range Tacking, Doppler Measurement, Phase Measurement
d) SENSORS AND THE ENVIRONMENT: Atmospheric Effects, Target Characteristics, Clutter Characteristics, Multipath
e) ACTIVE SENSORS: ADVANCED TECHNIQUES: Probability of Detection, Angle Measurement and Tracking, Combined Range/Doppler and Angle Tracking, Frequency Modulation and the Fast Fourier Transform, High Range Resolution, Wide Aperture Methods, Synthetic Aperture Methods (SAR)
Objectives: The course aims to provide students with a good practical knowledge of a broad range of sensor technologies, operational principles and relevant signal processing techniques.
Expected Outcomes: A good understanding of active sensors, their outputs and applicable signal processing techniques. An appreciation of the basic sensors that are available to engineers and when they should be used.
The course covers the following topics:
a) SIGNALS: Convolution, The Fourier Transform, Modulation (FM, AM, FSK, PSK etc), Frequency shifting (mixing)
b) PASSIVE SENSORS: Infrared Radiometers, Imaging Infrared, Passive Microwave Imaging, Visible Imaging and Image Intensifiers
c) ACTIVE SENSORS THE BASICS: Operational Principles, Time of flight (TOF) Measurement and Imaging of Radar, Lidar and Sonar, Radio Tags and Transponders, Range Tacking, Doppler Measurement, Phase Measurement
d) SENSORS AND THE ENVIRONMENT: Atmospheric Effects, Target Characteristics, Clutter Characteristics, Multipath
e) ACTIVE SENSORS: ADVANCED TECHNIQUES: Probability of Detection, Angle Measurement and Tracking, Combined Range/Doppler and Angle Tracking, Frequency Modulation and the Fast Fourier Transform, High Range Resolution, Wide Aperture Methods, Synthetic Aperture Methods (SAR)
Objectives: The course aims to provide students with a good practical knowledge of a broad range of sensor technologies, operational principles and relevant signal processing techniques.
Expected Outcomes: A good understanding of active sensors, their outputs and applicable signal processing techniques. An appreciation of the basic sensors that are available to engineers and when they should be used.
MTRX5700 Experimental Robotics
Credit points: 6 Session: Semester 1 Classes: Laboratories, Lectures Prerequisites: (AMME3500 OR AMME9501 or AMME8501) AND MTRX3700 Assumed knowledge: Knowledge of statics and dynamics, rotation matrices, programming and some electronic and mechanical design experience is assumed. Assessment: Through semester assessment (70%) and Final Exam (30%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to present a broad overview of the technologies associated with industrial and mobile robots. Major topics covered are sensing, mapping, navigation and control of mobile robots and kinematics and control of industrial robots. The subject consists of a series of lectures on robot fundamentals and case studies on practical robot systems. Material covered in lectures is illustrated through experimental laboratory assignments. The objective of the course is to provide students with the essential skills necessary to be able to develop robotic systems for practical applications.
At the end of this unit students will: be familiar with sensor technologies relevant to robotic systems; understand conventions used in robot kinematics and dynamics; understand the dynamics of mobile robotic systems and how they are modeled; have implemented navigation, sensing and control algorithms on a practical robotic system; apply a systematic approach to the design process for robotic systems; understand the practical application of robotic systems in manufacturing, automobile systems and assembly systems; develop the capacity to think critically and independently about new design problems; undertake independent research and analysis and to think creatively about engineering problems.
Course content will include: history and philosophy of robotics; hardware components and subsystems; robot kinematics and dynamics; sensors, measurements and perception; robotic architectures, multiple robot systems; localization, navigation and obstacle avoidance, robot planning; robot learning; robot vision and vision processing.
At the end of this unit students will: be familiar with sensor technologies relevant to robotic systems; understand conventions used in robot kinematics and dynamics; understand the dynamics of mobile robotic systems and how they are modeled; have implemented navigation, sensing and control algorithms on a practical robotic system; apply a systematic approach to the design process for robotic systems; understand the practical application of robotic systems in manufacturing, automobile systems and assembly systems; develop the capacity to think critically and independently about new design problems; undertake independent research and analysis and to think creatively about engineering problems.
Course content will include: history and philosophy of robotics; hardware components and subsystems; robot kinematics and dynamics; sensors, measurements and perception; robotic architectures, multiple robot systems; localization, navigation and obstacle avoidance, robot planning; robot learning; robot vision and vision processing.
Project units
All candidates are required to complete a minimum of 12 credit points of Project or Research units during the final year of study.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project.
Extended Capstone Project candidates take Capstone Project units AMME5020 and AMME5022 (total 18 cp) in place of Capstone Project AMME5021 and 6 cp of elective units.
AMME5020 Capstone Project A
Credit points: 6 Session: Semester 1,Semester 2 Classes: Research Prerequisites: 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study). Prohibitions: AMME5222 OR AMME5223 OR AMME5010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to be considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to be considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
AMME5021 Capstone Project B
Credit points: 6 Session: Semester 1,Semester 2 Classes: Research Prerequisites: 96 credit points from the MPE degree program or 48 cp from the MPE(Accel) program or 24 credit points from the ME degree program (including any credit for prior study) Prohibitions: AMME5022 OR AMME5222 OR AMME5223 OR AMME5010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
AMME5022 Capstone Project B Extended
Credit points: 12 Session: Semester 1,Semester 2 Classes: Research Prerequisites: 24 credit points in the Master of Engineering and WAM >=70, or 96 credit points in the Master of Professional Engineering and WAM >=70 or 48cp from MPE(Accel) program and WAM >=70 Prohibitions: AMME5021 OR AMME5222 OR AMME5223 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
Research pathway
Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research Pathway.
Research pathway candidates take Dissertation units AMME5222 and AMME5223 (total 24 cp) in place of Capstone Project units and 12 cp of elective units.
AMME5222 Dissertation A
Credit points: 12 Session: Semester 1,Semester 2 Prohibitions: AMME5020 OR AMME5021 OR AMME5022 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis. The final research project should be completed and reported at a level which meets AQF level 9 outcomes and has original components as would be expected in MPhil.
AMME5223 Dissertation B
Credit points: 12 Session: Semester 1,Semester 2 Prohibitions: AMME5020 OR AMME5021 OR AMME5022 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis. The final research project should be completed and reported at a level which meets AQF level 9 outcomes and has original components as would be expected in MPhil.
Major Industrial Project
Candidates undertaking the Major Industrial Project take AMME5010 in place of ENGG5217 Practical Experience, AMME5020/5021 Capstone Project A & B and 12 credit points of Specialist Elective units of study.
AMME5010 Major Industrial Project
Credit points: 24 Session: Semester 1,Semester 2 Classes: Project Work in Industry Prohibitions: AMME5020 OR AMME5021 OR AMME5022 OR AMME5222 OR AMME5223 OR ENGG5217 Assumed knowledge: Students must have a credit (>65%) average in prior semester enrolment Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Students spend 6 months at an industrial placement working on a major engineering project relevant to their engineering stream. This is a 24 credit point unit, which may be undertaken as an alternative to ENGG5217 Practical Experience, AMME5020/5021 Capstone Project A and B and 12cp of specialist electives.
This unit of study gives students experience in carrying out a major project within an industrial environment, and in preparing and presenting detailed technical reports (both oral and written) on their work. The project is carried out under joint University/industry supervision, with the student essentially being engaged full-time on the project at the industrial site.
This unit of study gives students experience in carrying out a major project within an industrial environment, and in preparing and presenting detailed technical reports (both oral and written) on their work. The project is carried out under joint University/industry supervision, with the student essentially being engaged full-time on the project at the industrial site.
Exchange units
Exchange units require the approval of the Program Director. With approval, up to 12 credit points of Exchange units may taken in place of other units, towards the requirements ofthe degree.
ENGG5231 Engineering Graduate Exchange A
Credit points: 6 Session: Intensive January,Intensive July Mode of delivery: Normal (lecture/lab/tutorial) day
The purpose of this unit is to enable students to undertake an overseas learning activity during the university's summer or winter break while completing a Masters degree in either Engineering, Professional Engineering, Information Technologies or Project Management. The learning activity may comprise either a short project under academic or industry supervision or summer or winter school unit of study at an approved overseas institution. The learning activity should demonstrate outcomes and workload equivalent to a 6 credit point Master's level unit in the student's current award program.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.
ENGG5232 Engineering Graduate Exchange B
Credit points: 6 Session: Intensive January,Intensive July Mode of delivery: Normal (lecture/lab/tutorial) day
The purpose of this unit is to enable students to undertake an overseas learning activity during the university's summer or winter break while completing a Masters degree in either Engineering, Professional Engineering, Information Technologies or Project Management. The learning activity may comprise either a short project under academic or industry supervision or summer or winter school unit of study at an approved overseas institution. The learning activity should demonstrate outcomes and workload equivalent to a 6 credit point Master's level unit in the student's current award program.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.
For more information on units of study visit CUSP (https://cusp.sydney.edu.au).