Advanced Coursework Science
Unit outlines will be available though Find a unit outline.
Table A Advanced Coursework Science
Students in the Bachelor of Advanced Studies (Science) must complete a minimum of 24 credit points of 4000-level units from Table A, Advanced Coursework Science, comprising
(i) 12-36 credit points of 4000-level Advanced Coursework project units
(ii) Science Advanced Coursework units listed below
Advanced Coursework project
GEOS4888 Advanced Geosciences Project
Credit points: 12 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including 6cp of (ENVI3888 or GEOG3888 or GEOL3888 or MARS3888) Assumed knowledge: A major in Geology and Geophysics, Geography, Environmental Studies or Marine Science Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Approximately 4 weeks with industry, community or research partner, plus introductory sessions and a final presentation. Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: Department permission required for enrolment
This unit of study will allow students who have completed an undergraduate major to assist an industry, community or research partner to address a real-world problem. You will work with other students in a group-based project that has been initiated andsupervised by an academic in the School of Geosciences. The projects on offercan be drawn from any of the Geosciences disciplines (Geography, Geology, Geophysics and Environmental Studies) and will involve inter-disciplinary problem-solving skills and learning.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
HPSC4888 HPS Advanced Project
Credit points: 12 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including 12cp of HPSC3XXX or HSTY3XXX or PHIL3XXX Assumed knowledge: Major or Minor in History and Philosophy of Science Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: This unit is for 4th year non-nonours students who wish to undertake a supervised reserach project on a smaller scale than the hons project.
HPS investigates the nature of science in general; what distinguishes scientific activity; how theories explain; how they are confirmed; whether they should be read literally; and the moral dilemmas raised by the sciences. We also investigate the fundamental concepts of individual sciences and how they bear on ancient philosophical questions. History and philosophy of science is distinctive in integrating these two areas of study, with investigations in each area often closely interwoven. The purpose of this unit of study is to give students a more advanced understanding of both history of science and philosophy of science and to improve your skills in writing, argument and analysis. You will identify and develop a research project in which you will apply methodological knowledge gathered during your previous studies to synthesize history and philosophy of science. The historical part will arise through your researching of some episode in history of science that both interests you and promises to interact in an interesting way with a philosophical topic of interest to you. You will present your results before your classmates and also deliver an extended written assignemnt. Learning how present material verbally and in written form is an essential skill for scholars in HPS as well as in the wider workplace.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
LIFE4888 Applied Life Sciences Project
Credit points: 12 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 cp of units of study of which a minimum needs to be 24 cp of 3000-level or 4000-level units of study Prohibitions: AFNR410X or AGRI410X or AVBS4015 or AVBS4016 or AVBS4017 or AVBS4018 or ENVX410X or FOOD410X or QBIO410X or SOIL410X or WILD410X Assumed knowledge: Completion of a Table A Science major. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Depends on project choice, may be up to 4 weeks in the field, a community or industry setting. Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: This Unit of Study is best suited for students in Life and Environmental Sciences. Field work may form part of the project.
As the world's population builds towards 9 billion, we are challenged to create agriculture efficiencies and ensure food and water safety and security. Solutions from the Life Sciences are needed to meet these demands. In this unit you will have the opportunity to develop practical solutions from a range of discipline areas including agriculture, animal science, environmental management, food production and agribusiness. These skills and experiences will facilitate your understanding of current practices and innovations used in the development and management of natural and production ecosystems. The unit builds on applied knowledge gained from units of study undertaken throughout a degree in Life Sciences. As part of a small group of students, you will have the opportunity to work on a collaborative industry relevant research project. The activities will include the design of the study; generation, management and analysis of data; and presenting your findings to a diverse audience both orally and in written format. You will work collaboratively learning skills for better communication, organisation and time management and communication - all of which are competencies that are highly valued by employers and indicate professionalism. By doing this you will gain the ability to work collaboratively in a small team which is part of the essential foundation for a successful career pathway.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
PHYS4888 Advanced Physics Project
Credit points: 12 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including PHYS3X34 and PHYS3X35 Assumed knowledge: 48 credit points of 3000-level units of study Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: This unit is for 4th year non-honours students who want to complete a research project in a small group.
Physicists actively applies their knowledge and technical skills to tackle the major challenges of our time. This unit will draw upon your learning in previous year for you to work on a practical project related to the grand challenges identified by the School of Physics, which includesArtificial Intelligence and Physics, Fundamental laws and the Universe, The Nano and Quantum World, A Sustainable Future, Physics and Society, and Physics in Medicine and Biology. This unit is designed to facilitate a collaborative, inquiry-based approach to complex problem solving. You will have the opportunity to plan, design and analyse your own research project within a small group of students. You will work in a team and will be supervised by an academic from the School of Physics. In this unit, you will not only deepen your understanding around specific project-related issues, but also develop skills in professional reflection, collaboration, and complex problem solving skills. All of these skills are highly valued by employers.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
PSYC4888 Advanced Psychology Project
Credit points: 12 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: PSYC2012 and [(18cp of PSYC3XXX) or (12cp of PSYC3XXX and SCPU3001) or (6cp of PSYC3XXX and SCPU3001 and HPSC3023)] Assumed knowledge: Have sound knowledge of the main discipline areas of psychological science as well as training in empirical research methods and statistics, and should have the ability to apply this knowledge, training and methodology in a collaborative project setting Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: Department permission required for enrolment
Note: This unit is for 4th year students who want to complete a research project in a small group. Student numbers in this unit are limited due to project availability. Admission will be based on a "first come, first served" basis. Students will not be admitted after week 2 of semester as project groups will have already been formed.
Psychology is a science which relies on empirical research to back up its claims. This unit will provide you with the opportunity to plan, design and analyse your own research project within a small group of students. You will be supervised by an academic from the School of Psychology. In this unit, you will continue to understand and explore disciplinary knowledge, while also meeting and collaborating with students through project-based learning. You will identify and solve problems, collect and analyse data and communicate your findings to a diverse audience during a final symposium. All of these skills are highly valued by employers. This unit will foster the ability to work in teams, and this is essential for both professional and research pathways in the future.
SCPU4001 Industry and Community Science Project A
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive February,Intensive July Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study and including a minimum of 24 credit points at the 3000- or 4000-level and 18 credit points of 3000- or 4000-level units from Science Table A Corequisites: SCPU4002 Assumed knowledge: Depth of knowledge in at least one Science discipline (completion of a major) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Minimal practical field work is expected but requirements will vary depending on the project, and may include a period of mobility or immersion in a community or industry setting. Mode of delivery: Block mode Faculty: Science
In Industry and Community Project units students work collaboratively in interdisciplinary teams on complex ‘real world’ problems under a theme developed in collaboration with industry and community partners. Briefed by the partners and guided by project supervisors, students use systems thinking approaches to design their own projects and engage in self-directed inquiry-based research to provide final recommendations. In this unit, students will develop their own professional identity through participation in communities of practice and reflective practice, together with an in-depth understanding of specific project-related matters. This experience will equip students with an agile mindset and skillset that will assist them to successfully navigate dynamic future environments and career paths. See the ICPU website for further information here: https://www.sydney.edu.au/students/industry-and-community-projects/4000-level-projects.html
SCPU4002 Industry and Community Science Project B
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study and including a minimum of 24 credit points at the 3000- or 4000-level and 18 credit points of 3000- or 4000-level units from Science Table A Corequisites: SCPU4001 Assumed knowledge: Depth of knowledge in at least one Science discipline (completion of a major) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Minimal practical field work is expected but requirements will vary depending on the project, and may include a period of mobility or immersion in a community or industry setting. Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
In Industry and Community Project units students work collaboratively in interdisciplinary teams on complex ‘real world’ problems under a theme developed in collaboration with industry and community partners. Briefed by the partners and guided by project supervisors, students use systems thinking approaches to design their own projects and engage in self-directed inquiry-based research to provide final recommendations. In this unit, students will develop their own professional identity through participation in communities of practice and reflective practice, together with an in-depth understanding of specific project-related matters. This experience will equip students with an agile mindset and skillset that will assist them to successfully navigate dynamic future environments and career paths. See the ICPU website for further information here: https://www.sydney.edu.au/students/industry-and-community-projects/4000-level-projects.html
Science Advanced Coursework
SCIE4001 Science Communication
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study and including a minimum of 24 credit points at the 3000- or 4000-level and 18 credit points of 3000- or 4000-level units from Science Table A Assumed knowledge: Completion of a major in a science discipline. Basic knowledge of other sciences is beneficial. Experience in communication such as delivering oral presentations and producing written reports. An awareness of science in a societal context, e.g., of disciplinary applications Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: Mid-year honours students would take this unit of study in S1 (their second semester of study).
"If you can't explain it simply, you don't understand it well enough". This quote is widely attributed to Albert Einstein, but regardless of its provenance, it suggests that one measure of an expert's knowledge can be found in their ability to translate complex ideas so that they are accessible to anyone. The communication of science to the public is essential for science and society. In order to increase public understanding and appreciation of science, researchers must be able to explain their results, and the wider context of their research, to non-experts. This unit will explore some theoretical foundations of science communications, identify outstanding practitioners and empower students to produce effective science communication in different media. In this unit you will learn the necessary skills and techniques to tell engaging and informative science stories in order to bring complex ideas to life, for non-expert audiences. By undertaking this unit you will develop a greater understanding of the wider context of your honours unit, advance your communication skills and be able to explain your honours research to non-expert audiences such as friends, family or future employers. These transferable skills will equip you for future research - where emphasis is increasingly placed on public communication and/or outreach - or professional pathways - where effective communication of complex ideas is highly valued.
SCIE4002 Experimental Design and Data Analysis
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1a Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study and including a minimum of 24 credit points at the 3000- or 4000-level and 18 credit points of 3000- or 4000-level units from Science Table A Prohibitions: ENVX3002 or STAT3X22 or STAT4022 or STAT3X12 Assumed knowledge: Completion of units in quantitative research methods, mathematics or statistical analysis at least at 1000-level Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode Faculty: Science
An indispensable attribute of an effective scientific researcher is the ability to collect, analyse and interpret data. Central to this process is the ability to create hypotheses and test these by using rigorous experimental designs. This modular unit of study will introduce the key concepts of experimental design and data analysis. Specifically, you will learn to formulate experimental aims to test a specific hypothesis. You will develop the skills and understanding required to design a rigorous scientific experiment, including an understanding of concepts such as controls, replicates, sample size, dependent and independent variables and good research practice (e.g. blinding, randomisation). By completing this unit you will develop the knowledge and skills required to appropriately analyse and interpret data in order to draw conclusions in the context of an advanced research project. From this unit of study, you will emerge with a comprehensive understanding of how to optimise the design and analysis of an experiment to most effectively answer scientific questions.
SCIE4003 Ethics in Science
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1a,Semester 2a Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study and including a minimum of 24 credit points at the 3000- or 4000-level and 18 credit points of 3000- or 4000-level units from Science Table A Prohibitions: HSBH3004 or HPSC3107 Assumed knowledge: Successful completion of a Science major Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Completion of ITAR Modules required for students who choose the Animal Ethics module. Mode of delivery: Block mode Faculty: Science
In the contemporary world, a wide variety of ethical concerns impinge upon the practice of scientific research. In this unit, you will learn how to identify potential ethical issues within science, acquire the tools necessary to analyse them, and develop the ability to articulate ethically sound insights about how to resolve them. In the first portion of the unit, you will be familiarised with how significant developments in post-World War II science motivated sustained ethical debate among scientists and in society. In the second portion of the unit, you will select from either a Human Ethics module or an Animal Ethics module and learn the requirements of how to ensure your research complies with appropriate national legislation and codes of conduct. By undertaking this unit, you will develop the ability to conduct scientific research in an ethically justifiable way, place scientific developments and their application in a broader social context, and analyse the social implications and ethical issues that may potentially arise in the course of developing scientific knowledge.
PSYC4004 Applied Psychology in the Workplace
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (144 cp of which a minimum needs to be 24 cp of 3000-level or 4000-level units of study) or (12 cp PSYC3XXX) Prohibitions: PSYC4730 Assumed knowledge: Students should have the ability to read and interpret findings from scientific research, and have a basic familiarity with the empirical process Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Most of us will spend at least one third of our lives in the workplace. Psychology has given us considerable insights into how people think, feel and behave as they do, and this has great implications for the workplace. Workplace psychology, sometimes called business psychology, refers to the practice of applying psychological principles and practices to a work environment. The goal is to identify and solve problems, increase employee satisfaction and well-being, improve workplace dynamics and to generally make the workplace a better place in which to spend one third of your life. In this unit of study there will be a particular focus on using positive psychology in the workplace. You will be equipped to use psychological principles in the workplace to make the workplace a more productive, fairer and a more need-satisfying experience. Drawing on Self-determination Theory you will explore the concept of the Positive Built Workplace Environment and how the interface between leadership, building design and workplace culture can produce sustainable, flourishing workplaces. You will also explore issues like overcoming procrastination and increasing productivity; positively influencing and leading people in organisations; the formation of effective teams; the psychology of negotiation and conflict resolution; facilitating wellness; preventing stress and burnout; psychopaths in the workplace and the creation of positive workplace experiences. You will also cover issues such as the evaluation of positive workplace interventions with data collection methods including questionnaires, surveys, focus groups, interviews and case studies. This theoretically-grounded but very practical unit of study gives you the tools to enhance the work experiences of yourself and others.
PSYC4005 Coaching Skills for Work and Life
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (144 cp of which a minimum needs to be 24 cp of 3000-level or 4000-level units of study) or (12 cp PSYC3XXX) Prohibitions: PSYC4721 or PSYC4722 Assumed knowledge: Students should have the ability to read and interpret findings from scientific research, and have a basic familiarity with the empirical process Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Coaching skills are now an essential part of the contemporary workplace. Research shows that the ability to coach self and others is one of the most important skills for employees, managers and leaders. However, to date, opportunities for learning evidence-based coaching skills at universities has been very limited. By completing this unit you will develop a solid understanding of the psychology of coaching in the workplace, in organisations and in relation to personal life matters and the ability to apply such theories in real life situations. We will explore the theoretical foundations of the psychology of coaching including self-regulation theory, goal theory, change theory and solution-focused approaches to coaching and show how to apply these to real-life issues and goals. Students will leave with a portfolio of applied coaching skills, the ability to conduct both formal and informal coaching conversations, the ability to evaluate and create conceptually coherent coaching processes and having experienced a personal coaching program. Active learning in the form of peer coaching is central to this program and will guide students to integrate their developing knowledge, skills and values about coaching in ways that question and build understanding. Students need to be prepared and willing to engage in peer coaching conversations.
PSYC4006 Positive Psychology, Resilience and Happiness
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (144 cp of which a minimum needs to be 24 cp of 3000-level or 4000-level units of study) or (12 cp PSYC3XXX) Prohibitions: PSYC4730 or PSYC4723 Assumed knowledge: Students should have the ability to read and interpret findings from scientific research, and have a basic familiarity with the empirical process Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The search for happiness and well-being is ubiquitous. Humans crave a sense of well-being, and resilience in the face of hardships has been a prized attribute since time immemorial. However, it is only relatively recently that psychology has turned its attention to the scientific exploration of well-being, resilience, happiness and the life well-lived. This unit of study teaches skills and pathways for cultivating wellbeing, resilience and happiness in individuals, groups, organisations and communities as a whole. The teaching in this unit advocates scientific methods and promotes critical thinking and analysis of key facets of positive psychology. We will explore the theoretical perspectives and conceptual frameworks that underpin positive psychology. The related empirical research will be examined and critiqued in order to identify best practice interventions and to facilitate the utilisation of this knowledge into effective real world methods. Active learning is a central feature of this unit. Students will be expected to apply positive psychology principles in their own lives and to reflect on these experiences. A wide range of learning approaches will be used including: debates, role plays, case studies, and reflective journal entries. These will form part of the learning and assessment activities.
AGRI4001 Advanced Plant Production Systems
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units including AGRI2001 and AGRI3888 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: Some activities will take place at the University's Camden campus and/or at other field sites around NSW.
Plants have food, fibre and industrial uses in our societies. Successfully growing plants and their products for our use involves a large and very diverse mix of industries and therefore requires a wide spectrum of people with specialized skills in production and protection techniques for different types of plants and in the skills required to breed better varieties over time. Within this framework, the diversity of uses for plants is increasing, it is evident that the use of inputs such as water, nutrients and energy in the production chains must become more efficient and all industry sectors need to monitor and respond to the impact of climate change. In this unit you will be able to choose to study, from a list of alternatives, three different aspects or industries involved in plant production. This choice of modules enables you to develop targeted advanced knowledge and skills in your areas of interest, alongside building your knowledge and understanding of plant production industry processes and challenges in general. This will be achieved through a combination of interactive theory development, inquiry-led practicals, field work and field trips. By undertaking this unit you will gather a deeper knowledge of the specific technical and social issues that challenge the chosen aspects/industries while garnering an understanding of the linkages and integration of specialties required in modern crop production systems. This will empower you to further explore and contribute to plant production industries through a range of production or research-based avenues.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
AMED4001 Advanced Studies in Cancer Biology
This unit of study is not available in 2022
Credit points: 6 Teacher/Coordinator: A/Prof Scott Byrne Session: Semester 2 Classes: Online lecturettes, book club, workshops with experts and advanced practicals (~4-6h per week) Prerequisites: BCMB2001 or BCMB2901 or MEDS2003 Assumed knowledge: AMED3001 or AMED3901 Assessment: Attendance and participation (10%), development of online learning resources (20%), Research Proposal (25%), Practical Assessment (15%) and exam (30%) Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Medicine and Health
Progress in our ability to cure or delay cancer is rapidly accelerating. The prospects of patients with cancer have been revolutionised by the genetic, molecular and cellular study of cancers in individual patients. This research is also enabling a more sophisticated understanding of how sub-cellular processes and the many different types of cells in the body interact to support human life. Together we will look at the molecular and cellular origins of the behaviours of cancers: what drives accelerated cancer cell replication, their resistance to cell death and their ability to induce angiogenesis, local invasion and metastasis. We will examine genomic instability, dysregulated cellular metabolism and the role of inflammation and the immune system. We will analyse these behaviours and their relevance to cancer therapy. You will work independently and in groups in face-to-face and online learning activities. You will deepen your knowledge of molecular and cellular biology and hone the intellectual and practical skills required to equip you to participate in the latest developments to improve survival and health for all cancer patients. Upon completion, you will have developed the skills required to launch your career in cancer research, clinical and diagnostic cancer services and/or the corporate system that supports the prevention, diagnosis and treatment of cancer.
Textbooks
Resources on the LMS + the following article, book and textbook: Hanahan and Weinberg (2011) Hallmarks of Cancer: The Next Generation. Cell 144 The Emperor of All Maladies: A Biography of Cancer by Siddhartha Mukherjee Robert A Weinberg. The Biology of Cancer, 2nd Edition
AMSI4001 AMSI Summer School
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive February Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Completed a first degree with a major in Mathematics, Statistics, Financial Mathematics and Statistics, Data Science or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode Faculty: Science
Note: Department permission required for enrolment
Note: This unit has been designed to enable University of Sydney students to continue to take advantage of the premier Mathematics and Statistics summer school held in Australia. The University of Queensland and Melbourne already offer similar shell units to their honours and masters students respectively.
The Australia-wide community in the Mathematical Sciences offers rich intellectual resources beyond what is available at the University of Sydney alone. This unit will enable you to access some of those resources by taking a course at the annual Australian Mathematical Sciences Institute (AMSI) Summer School, and in this way engage with staff and other students from all over the country. This annual residential summer school provides a range of courses taught by eminient researchers from across Australia for honours and postgraduate students. You will study an area of Mathematics of Statistics beyond what is typically available at the University of Sydney. You will also meet students from other universities, learn about Mathematical topics of general interest through public lectures and lectures especially designed for summer School participants, and take part in a career information event. By doing this unit, you will develop expertise in a specialist area of Mathematics and Statistics at an advanced level, broaden your horizons to develop a deeper understanding of the role of the Mathematical Sciences beyond the university sector, and begin to form a network of peers across Australia.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
AVBS4020 ONE Health
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 cp of units including AVBS3001 or FOOD3000 or VIRO3X01 or MICR3X52 or BIOL3019 or BIOL3033 Prohibitions: AVBS4004 Assumed knowledge: Fundamental understanding of disease epidemiology and risk Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: The unit will be a core unit for BAS (Animal Health, Disease and Welfare) Honours, all students in this honours programme will take this unit.
The health and wellbeing of all living creatures on this earth is dependent on the interconnections between people, animals, plants and the land they share. The concept of ONE Health recognizes that the health of people, animals and the environment are connected and closely related. This unit will investigate how humans relate to wild and domestic animals and their environment and investigate the negative consequence of these interaction through examining recent emerging infectious disease and zoonotic events. You will utilize the principles of veterinary and public health, biosecurity, food safety and security, risk assessment and epidemiology to understand how public health, animal health and environmental health can be optimized in a holistically approach, taking into consideration the multifaceted nature of human, animal, environmental interaction. By doing this unit you will apply your knowledge of infectious disease of animals and humans with the broader concepts of environmental and planetary health to generate disease management strategies that can lead to a more sustainable planet into the 22nd century. The unit will provide final year students with a major in Animal Health, Disease and Welfare the skills to move into the professional fields of biosecurity, human and animal disease surveillance and national and international policy development related to ecological, animal and public health.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
ENVX4001 GIS, Remote Sensing and Land Management
Credit points: 6 Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 cp of 1000-3000 level units Assumed knowledge: Basic GIS knowledge. Completion of at least a major or minor Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
This unit of study is aimed at developing advanced skills in spatial predictive modelling including mapping of environmental properties and image classification. The units begins with an introductory module on key concepts in GIS, and the use of the R ecosystem for spatial science. In this module you will learn how to process spatial data in a reproducible manner and get it into a format ready for spatial modelling. In the second module we will cover spatial modelling approaches including geostatistics, statistical and machine learning models. Finally, in the third module you will have an opportunity to apply your knowledge in a spatial modelling project of your choice.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
FOOD4002 Future Foods
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit point of units of study including 12cp of FOOD3XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Food science and technology are evolving rapidly, driven by several forces including highly competitive national and international markets for food products; ongoing changes in consumer preferences, including those directed at sustainability and convenience, as well as an expansion in the range of available ingredients. This unit of study explores six major topics in contemporary food science and technology: New fast-reliable techniques and technologies to test food ingredients and final food products; Novel ingredients for food production; New food processing technologies; Recent innovations in Australian native food production; Advanced methods to simulate human sensing and digestion of foods, and New strategies to minimize food waste and to add value to by-products of food production. You will become familiar with a broad spectrum of ways in which food science and technology is adapting to meet current and future challenges in the world's biggest industry. You will learn about specific problems in food production and how these can be overcome using modern approaches and methods that take advantage of the latest science and technology. The topics covered will help you gain advanced insights into future foods from both a global and Australian perspective. By doing this unit of study you will gain cutting-edge concepts and knowledge in food science, which will be highly relevant to either further study or as a professional food scientist.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
HPSC4101 Philosophy of Science
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points of HPSC3XXX or PHIL3XXX or HSTY3XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
This unit of study explores a variety of issues in philosophy of science. It uses a range of examples from different sciences (e.g., physics, biology, chemistry) to examine theories, models, concepts, and the various tools that are considered part of the scientific method. Students will learn how to apply this philosophical analysis of science to historical and contemporary findings, as well as to their own research.
Textbooks
Weekly readings
HPSC4102 History of Science
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points of HPSC3XXX or PHIL3XXX or HSTY3XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
This unit explores major episodes in the history of science from the 18th century until the present as well as introducing students to historiographic methods. Special attention is paid to developing practical skills in the history and philosophy of science.
Textbooks
Weekly Readings
HPSC4103 Sociology of Science
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points of HPSC3XXX or PHIL3XXX or HSTY3XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
This seminar discusses a range of approaches to the social theory of modern science. We will read key texts on questions such as: what makes science part of Western modernity? What is the role of science in the social transformations of the industrial era? In what sense, if at all, can science be said to offer privileged access to reality? What is the relationship between scientific knowledge and social reality?
Textbooks
Weekly Readings
HPSC4104 Recent Topics in HPS
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points of HPSC3XXX or PHIL3XXX or HSTY3XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
An examination of one area of the contemporary literature in the history and philosophy of science. Special attention will be paid to development of research skills in the history and philosophy of science.
HPSC4105 HPS Research Methods
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points of HPSC3XXX or PHIL3XXX or HSTY3XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Adopting a seminar style, this unit provides students with an advanced knowledge of the skills necessary to conduct their own original research in the sociology, history and philosophy of science. Participants will be given a weekly set of core readings, and specialists both from within the Unit and from outside will present their views on the topic in question. This presentation will form the basis for a discussion involving the students, the academic members of the Unit, and invited speakers. Topics will include: the use of case studies in the philosophy of science, how to conduct oral history projects, institutional history, and sociological methodology.
HPSC4108 Core topics: History and Philosophy of Sci
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 12 credit points of HPSC3XXX or PHIL3XXX or HSTY3XXX Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
An intensive reading course, supported by discussion seminars, into core topics in HPS.
HSBH4101 Research Design and Analysis in Health
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: HSBH3018 or HSBH3019 Assumed knowledge: 48cp of 3000 level units of study Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Medicine and Health
Note: Department permission required for enrolment
Note: Refer to the unit of study outline https://www.sydney.edu.au/units
In this unit of study you delve deeper into the methods used in health research, building on your knowledge from previous years (see the prerequisites). You will attend lectures and interactive workshops, and complete online study modules. After the common foundations, the unit will be split in streams so that each student will learn either quantitative or qualitative data analysis in depth (not both), depending on their prior learning. As part of quantitative methods, we cover experimental and observational (survey, caseÂcontrol, cohort) study designs, and linear model and logistic regression for data analysis. Qualitative approaches include ethnography, grounded theory, phenomenology and narrative. Methods include interview, focus group and text based. The unit will help with your specific Honours project.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
LIFE4000 Data and Technology for the Life Sciences
Credit points: 6 Session: Semester 1a Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including a minimum of 24 credit points at the 3000- or 4000-level and 18 credit points of 3000- or 4000-level units from Science Table A or 1 Assumed knowledge: Completion of units in quantitative research methods, mathematics or statistical analysis at least at 1000-level Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode Faculty: Science
Advances in digital technology are creating new ways to quantify biological processes and properties, from the scale of molecules to ecosystems. The life scientist of the 21st century needs to understand how to collect, manage, synthesise, and communicate this information within a reproducible workflow in order to make robust inferences about the natural world. This intensive unit of study will introduce you to key concepts and tools across three modules: digital project and data management, evidence synthesis and meta-analysis, and scientific coding using R. The focus is on active learning, discussion, and problem-solving across intensive workshop-based practicals, rather than the traditional lecture format. By completing this unit you will further understand the practical realities of scientific inquiry. To that end, you will develop a flexible skillet for conducting reproducible and open research to ensure the results of your work are maximally beneficial to both your future self and the broader community. Knowledge of how to work with data through the entire pipeline -from sampling to synthesis-will be useful wherever it is encountered in your education, career, and life.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
LIFE4101 Advanced Life Science
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: A WAM of 65 or greater. 144 credit points of units of study, including a minimum of 12 credit points from the following (AMED3XXX or ANAT3XXX or ANSC3105 or BCHM3XXX or BCMB3XXX or BIOL3XXX or CPAT3XXX or ENVX3XXX or FOOD3XXX or GEGE3XXX or HSTO3XXX or IMMU3XXX or INFD3XXX or MEDS3XXX or MICR3XXX or NEUR3XXX or NUTM3XXX or PCOL3XXX or PHSI3XXX or QBIO3XXX or SCPU3001 or STAT3XXX or VIRO3XXX) Assumed knowledge: This unit is advanced coursework related to understanding cellular and molecular processes in biology. It assumes background knowledge of cellular and molecular biological aspects of the life sciences consistent with a degree major in Biochemistry, Biochemistry and Molecular Biology, Cell and Developmental Biology, Cell Pathology, Genetics and Genomics, Immunobiology, Infectious Diseases, Medical Science, Microbiology, Molecular Biology and Genetics, Nutrition and Metabolism, Nutrition Science, or Quantitative Life Sciences Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Note: Department permission required for enrolment
Note: This unit must be taken by all students in Biochemistry and Molecular Biology honours or Microbiology honours.
Living organisms are impacted by processes that occur across a very wide range of scales. These range from rapid processes at the molecular and cellular scale to multi-year processes at environmental and evolutionary scales. One of the great challenges for modern systems biology is integrating measurements across these scales to understand gene x environment interactions. This unit will develop your skills in this area through critical analysis of a series of recent research papers on a themed topic in small group discussions. For each paper we will explore principles behind the key methods and the methods' practicality. We will look at how those methods were incorporated into an experimental design to address a biological question. We will critically assess the support for conclusions in their paper and their scientific significance. By doing this unit you will develop skills in reading and interpreting primary scientific literature and an advanced understanding of the modern topic in systems biology. You will gain a high level of understanding of the theory of key biochemical and statistical methods for analysis of genes, proteins, and cells in biological systems. You will gain the confidence to apply these insights to planning, conducting and reporting your own research findings.
MATH4061 Metric Spaces
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average mark of 65 or above in 12cp from the following units (MATH2X21 or MATH2X22 or MATH2X23 or MATH3061 or MATH3066 or MATH3063 or MATH3076 or MATH3078 or MATH3962 or MATH3963 or MATH3968 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3977 or MATH3978 or MATH3979) Prohibitions: MATH3961 Assumed knowledge: Real analysis and vector spaces. For example (MATH2922 or MATH2961) and (MATH2923 or MATH2962) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Topology, developed at the end of the 19th Century to investigate the subtle interaction of analysis and geometry, is now one of the basic disciplines of mathematics. A working knowledge of the language and concepts of topology is essential in fields as diverse as algebraic number theory and non-linear analysis. This unit develops the basic ideas of topology using the example of metric spaces to illustrate and motivate the general theory. Topics covered include: Metric spaces, convergence, completeness and the Contraction Mapping Theorem; Metric topology, open and closed subsets; Topological spaces, subspaces, product spaces; Continuous mappings and homeomorphisms; Compactness Connectedness Hausdorff spaces and normal spaces. You will learn methods and techniques of proving basic theorems in point-set topology and apply them to other areas of mathematics including basic Hilbert space theory and abstract Fourier series. By doing this unit you will develop solid foundations in the more formal aspects of topology, including knowledge of abstract concepts and how to apply them. Applications include the use of the Contraction Mapping Theorem to solve integral and differential equations.
MATH4062 Rings, Fields and Galois Theory
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (MATH2922 or MATH2961) or a mark of 65 or greater in (MATH2022 or MATH2061) or 12cp from (MATH3061 or MATH3066 or MATH3063 or MATH3076 or MATH3078 or MATH3962 or MATH3963 or MATH3968 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3977 or MATH3978 or MATH3979) Prohibitions: MATH3062 or MATH3962 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
This unit of study lies at the heart of modern algebra. In the unit we investigate the mathematical theory that was originally developed for the purpose of studying polynomial equations. In a nutshell, the philosophy is that it should be possible to completely factorise any polynomial into a product of linear factors by working over a large enough field (such as the field of all complex numbers). Viewed like this, the problem of solving polynomial equations leads naturally to the problem of understanding extensions of fields. This in turn leads into the area of mathematics known as Galois theory. The basic theoretical tool needed for this program is the concept of a ring, which generalises the concept of a field. The course begins with examples of rings, and associated concepts such as subrings, ring homomorphisms, ideals and quotient rings. These tools are then applied to study quotient rings of polynomial rings. The final part of the course deals with the basics of Galois theory, which gives a way of understanding field extensions. Along the way you will see some beautiful gems of mathematics, including Fermat's Theorem on primes expressible as a sum of two squares, solutions to the ancient Greek problems of trisecting the angle, squaring the circle, and doubling the cube, and the crown of the course: Galois' proof that there is no analogue of the quadratic formula for the general quintic equation. On completing this unit of study you will have obtained a deep understanding of modern abstract algebra.
MATH4063 Dynamical Systems and Applications
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (A mark of 65 or greater in 12cp of MATH2XXX units of study) or [12cp from (MATH3061 or MATH3066 or MATH3076 or MATH3078 or MATH3961 or MATH3962 or MATH3968 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3977 or MATH3978 or MATH3979)] Prohibitions: MATH3063 or MATH3963 Assumed knowledge: Linear ODEs (for example, MATH2921), eigenvalues and eigenvectors of a matrix, determinant and inverse of a matrix and linear coordinate transformations (for example, MATH2922), Cauchy sequence, completeness and uniform convergence (for example, MATH2923) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The theory of ordinary differential equations is a classical topic going back to Newton and Leibniz. It comprises a vast number of ideas and methods. The theory has many applications and stimulates new developments in almost all areas of mathematics. The emphasis is on qualitative analysis including phase-plane methods, bifurcation theory and the study of limit cycles. The more theoretical part includes existence and uniqueness theorems, linearisation, and analysis of asymptotic behaviour. The applications in this unit will be drawn from predator-prey systems, population models, chemical reactions, and other equations and systems from mathematical biology. You will learn how to use ordinary differential equations to model biological, chemical, physical and/or economic systems and how to use different methods from dynamical systems theory and the theory of nonlinear ordinary differential equations to find the qualitative outcome of the models. By doing this unit you will develop skills in using and analysing nonlinear differential equations which will prepare you for further studies in mathematics, systems biology or physics or for careers in mathematical modelling.
MATH4068 Differential Geometry
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (A mark of 65 or greater in 12cp of MATH2XXX units of study) or [12cp from (MATH3061 or MATH3066 or MATH3063 or MATH3076 or MATH3078 or MATH3961 or MATH3962 or MATH3963 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3977 or MATH3978 or MATH3979)] Prohibitions: MATH3968 Assumed knowledge: Vector calculus, differential equations and real analysis, for example MATH2X21 and MATH2X23 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
This unit is an introduction to Differential Geometry, one of the core pillars of modern mathematics. Using ideas from calculus of several variables, we develop the mathematical theory of geometrical objects such as curves, surfaces and their higher-dimensional analogues. For students, this provides the first taste of the investigation on the deep relation between geometry and topology of mathematical objects, highlighted in the classic Gauss-Bonnet Theorem. Differential geometry also plays an important part in both classical and modern theoretical physics. The unit aims to develop geometrical ideas such as curvature in the context of curves and surfaces in space, leading to the famous Gauss-Bonnet formula relating the curvature and topology of a surface. A second aim is to remind the students about all the content covered in the mathematical units for previous years, most importantly the key ideas in vector calculus, along with some applications. It also helps to prepare the students for honours courses like Riemannian Geometry. By doing this unit you will further appreciate the beauty of mathematics which originated from the need to solve practical problems, develop skills in understanding the geometry of the surrounding environment, prepare yourself for future study or the workplace by developing advanced critical thinking skills and gain a deep understanding of the underlying rules of the Universe.
MATH4069 Measure Theory and Fourier Analysis
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (A mark of 65 or greater in 12cp of MATH2XXX units of study) or [12cp from the following units (MATH3061 or MATH3066 or MATH3063 or MATH3076 or MATH3078 or MATH3961 or MATH3962 or MATH3963 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3977 or MATH3978 or MATH3979)] Prohibitions: MATH3969 Assumed knowledge: (MATH2921 and MATH2922) or MATH2961 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Measure theory is the study of fundamental ideas as length, area, volume, arc length and surface area. It is the basis for Lebesgue integration theory used in advanced mathematics ever since its development in about 1900. Measure theory is also a key foundation for modern probability theory. The course starts by establishing the basics of measure theory and the theory of Lebesgue integration, including important results such as Fubini's Theorem and the Dominated Convergence Theorem which allow us to manipulate integrals. These ideas are applied to Fourier Analysis which leads to results such as the Inversion Formula and Plancherel's Theorem. The Radon-Nikodyn Theorem provides a representation of measures in terms of a density. Key ideas of this theory are applied in detail to probability theory to provide a rigorous framework for probability which takes in and generalizes familiar ideas such as distributions and conditional expectation. When you complete this unit you will have acquired a new generalized way of thinking about key mathematical concepts such as length, area, integration and probability. This will give you a powerful set of intellectual tools and equip you for further study in mathematics and probability.
MATH4071 Convex Analysis and Optimal Control
This unit of study is not available in 2022
Credit points: 6 Teacher/Coordinator: Prof Georg Gottwald Session: Semester 1 Classes: Lecture 3hours/week, tutorial 1hr/week Prerequisites: [A mark of 65 or above in 12cp of (MATH2XXX or STAT2XXX or DATA2X02)] or [12cp of (MATH3XXX or STAT3XXX)] Prohibitions: MATH3971 Assumed knowledge: MATH2X21 and MATH2X23 and STAT2X11 Assessment: Assignment (15%), assignment (15%), exam (70%) Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The questions how to maximise your gain (or to minimise the cost) and how to determine the optimal strategy/policy are fundamental for an engineer, an economist, a doctor designing a cancer therapy, or a government planning some social policies. Many problems in mechanics, physics, neuroscience and biology can be formulated as optimisation problems. Therefore, optimisation theory is an indispensable tool for an applied mathematician. Optimisation theory has many diverse applications and requires a wide range of tools but there are only a few ideas underpinning all this diversity of methods and applications. This course will focus on two of them. We will learn how the concept of convexity and the concept of dynamic programming provide a unified approach to a large number of seemingly unrelated problems. By completing this unit you will learn how to formulate optimisation problems that arise in science, economics and engineering and to use the concepts of convexity and the dynamic programming principle to solve straightforward examples of such problems. You will also learn about important classes of optimisation problems arising in finance, economics, engineering and insurance.
MATH4074 Fluid Dynamics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (A mark of 65 or above in 12cp of MATH2XXX ) or (12cp of MATH3XXX ) Prohibitions: MATH3974 Assumed knowledge: (MATH2961 and MATH2965) or (MATH2921 and MATH2922) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Fluid Dynamics is the study of systems which allow for a macroscopic description in some continuum limit. It is not limited to the study of liquids such as water but includes our atmosphere and even car traffic. Whether a system can be treated as a fluid, depends on the spatial scales involved. Fluid dynamics presents a cornerstone of applied mathematics and comprises a whole gamut of different mathematical techniques, depending on the question we ask of the system under consideration. The course will discuss applications from engineering, physics and mathematics: How and in what situations a system which is not necessarily liquid can be described as a fluid? The link between an Eulerian description of a fluid and a Lagrangian description of a fluid, the basic variables used to describe flows, the need for continuity, momentum and energy equations, simple forms of these equations, geometric and physical simplifying assumptions, streamlines and stream functions, incompressibility and irrotationality and simple examples of irrotational flows. By the end of this unit, students will have received a basic understanding into fluid mechanics and have acquired general methodology which they can apply in their further studies in mathematics and/or in their chosen discipline.
MATH4076 Computational Mathematics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: [A mark of 65 or above in (12cp of MATH2XXX) or (6cp of MATH2XXX and 6cp of STAT2XXX or DATA2X02)] or (12cp of MATH3XXX) Prohibitions: MATH3076 or MATH3976 Assumed knowledge: (MATH2X21 and MATH2X22) or (MATH2X61 and MATH2X65) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Sophisticated mathematics and numerical programming underlie many computer applications, including weather forecasting, computer security, video games, and computer aided design. This unit of study provides a strong foundational introduction to modern interactive programming, computational algorithms, and numerical analysis. Topics covered include: (I) basics ingredients of programming languages such as syntax, data structures, control structures, memory management and visualisation; (II) basic algorithmic concepts including binary and decimal representations, iteration, linear operations, sources of error, divide-and-concur, algorithmic complexity; and (III) basic numerical schemes for rootfinding, integration/differentiation, differential equations, fast Fourier transforms, Monte Carlo methods, data fitting, discrete and continuous optimisation. You will also learn about the philosophical underpinning of computational mathematics including the emergence of complex behaviour from simple rules, undecidability, modelling the physical world, and the joys of experimental mathematics. When you complete this unit you will have a clear and comprehensive understanding of the building blocks of modern computational methods and the ability to start combining them together in different ways. Mathematics and computing are like cooking. Fundamentally, all you have is sugar, fat, salt, heat, stirring, chopping. But becoming a good chef requires knowing just how to put things together in creative ways that work. In a previous study, you should have learned to cook. Now you're going to learn how to make something someone else might want to pay for more than one time.
MATH4077 Lagrangian and Hamiltonian Dynamics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (A mark of 65 or greater in 12cp of MATH2XXX units of study) or [12cp from (MATH3061 orMATH3066 or MATH3063 or MATH3076 or MATH3078 or MATH3961 or MATH3962 or MATH3963 or MATH3968 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3978 or MATH3979)] Prohibitions: MATH3977 Assumed knowledge: 6cp of 1000 level calculus units and 3cp of 1000 level linear algebra and (MATH2X21 or MATH2X61) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Lagrangian and Hamiltonian dynamics are reformulations of classical Newtonian mechanics into a mathematically sophisticated framework using arbitrary coordinate systems. This formulation of classical mechanics generalises elegantly to modern theories of relativity and quantum mechanics. The unit develops dynamics from the Principle of Least Action using the calculus of variations. Emphasis is placed on the relation between the symmetry and invariance properties of the Lagrangian and Hamiltonian functions and conservation laws. Coordinate and canonical transformations are introduced to simplify apparently complicated dynamical problems. Connections between geometry and different physical theories beyond classical mechanics are explored. Students will be expected to describe and solve mechanical systems of some complexity including planetary motion and to investigate stability. Hamilton-Jacobi theory will be used to solve problems ranging from geodesic motion (shortest path between two points) on curved surfaces to relativistic motion in the vicinity of black holes. Students will study an application of Lagrangian and Hamiltonian dynamics described in a modern research paper.
MATH4078 PDEs and Applications
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: [A mark of 65 or greater in 6cp from (MATH2X21 or MATH2X65 or MATH2067) and a mark of 65 or greater 6cp from (MATH2X22 or MATH2X61)] or [12cp from (MATH3061 or MATH3066 or MATH3063 or MATH3076 or MATH3961 or MATH3962 or MATH3963 or MATH3968 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3977 or MATH3979)] Prohibitions: MATH3078 or MATH3978 Assumed knowledge: (MATH2X61 and MATH2X65) or (MATH2X21 and MATH2X22) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The aim of this unit is to introduce some fundamental concepts of the theory of partial differential equations (PDEs) arising in Physics, Chemistry, Biology and Mathematical Finance. The focus is mainly on linear equations but some important examples of nonlinear equations and related phenomena re introduced as well. After an introductory lecture, we proceed with first-order PDEs and the method of characteristics. Here, we also nonlinear transport equations and shock waves are discussed. Then the theory of the elliptic equations is presented with an emphasis on eigenvalue problems and their application to solve parabolic and hyperbolic initial boundary-value problems. The Maximum principle and Harnack's inequality will be discussed and the theory of Green's functions.
MATH4079 Complex Analysis
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (A mark of 65 or above in 12cp of MATH2XXX) or (12cp of MATH3XXX) Prohibitions: MATH3979 or MATH3964 Assumed knowledge: Good knowledge of analysis of functions of one real variable, working knowledge of complex numbers, including their topology, for example MATH2X23 or MATH2962 or MATH3068 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The unit will begin with a revision of properties of complex numbers and complex functions. This will be followed by material on conformal mappings, Riemann surfaces, complex integration, entire and analytic functions, the Riemann mapping theorem, analytic continuation, and Gamma and Zeta functions. Finally, special topics chosen by the lecturer will be presented, which may include elliptic functions, normal families, Julia sets, functions of several complex variables, or complex manifolds.
MATH4311 Algebraic Topology
This unit of study is not available in 2022
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with abstract algebra and basic topology, e.g., (MATH2922 or MATH2961 or equivalent), (MATH3961 or equivalent) and (MATH2923 or equivalent). Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
One of the most important aims of algebraic topology is to distinguish or classify topological spaces and maps between them up to homeomorphism. Invariants and obstructions are key to achieve this aim. A familiar invariant is the Euler characteristic of a topological space, which was initially discovered via combinatorial methods and has been rediscovered in many different guises. Modern algebraic topology allows the solution of complicated geometric problems with algebraic methods. Imagine a closed loop of string that looks knotted in space. How would you tell if you can wiggle it about to form an unknotted loop without cutting the string? The space of all deformations of the loop is an intractable set. The key idea is to associate algebraic structures, such as groups or vector spaces, with topological objects such as knots, in such a way that complicated topological questions can be phrased as simpler questions about the algebraic structures. In particular, this turns questions about an intractable set into a conceptual or finite, computational framework that allows us to answer these questions with certainty. In this unit you will learn about fundamental group and covering spaces, homology and cohomology theory. These form the basis for applications in other domains within mathematics and other disciplines, such as physics or biology. At the end of this unit you will have a broad and coherent knowledge of Algebraic Topology, and you will have developed the skills to determine whether seemingly intractable problems can be solved with topological methods.
MATH4312 Commutative Algebra
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with abstract algebra, e.g., MATH2922 or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Commutative Algebra provides the foundation to study modern uses of Algebra in a wide array of settings, from within Mathematics and beyond. The techniques of Commutative Algebra underpin some of the most important advances of mathematics in the last century, most notably in Algebraic Geometry and Algebraic Topology. This unit will teach students the core ideas, theorems, and techniques from Commutative Algebra, and provide examples of their basic applications. Topics covered include affine varieties, Noetherian rings, Hilbert basis theorem, localisation, the Nullstellansatz, ring specta, homological algebra, and dimension theory. Applications may include topics in scheme theory, intersection theory, and algebraic number theory. On completion of this unit students will be thoroughly prepared to undertake further study in algebraic geometry, algebraic number theory, and other areas of mathematics. Students will also gain facility with important examples of abstract ideas with far-reaching consequences.
MATH4313 Functional Analysis
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Real Analysis and abstract linear algebra (e.g., MATH2X23 and MATH2X22 or equivalent), and, preferably, knowledge of Metric Spaces Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Functional analysis is one of the major areas of modern mathematics. It can be thought of as an infinite-dimensional generalisation of linear algebra and involves the study of various properties of linear continuous transformations on normed infinite-dimensional spaces. Functional analysis plays a fundamental role in the theory of differential equations, particularly partial differential equations, representation theory, and probability. In this unit you will cover topics that include normed vector spaces, completions and Banach spaces; linear operators and operator norms; Hilbert spaces and the Stone-Weierstrass theorem; uniform boundedness and the open mapping theorem; dual spaces and the Hahn-Banach theorem; and spectral theory of compact self-adjoint operators. A thorough mechanistic grounding in these topics will lead to the development of your compositional skills in the formulation of solutions to multifaceted problems. By completing this unit you will become proficient in using a set of standard tools that are foundational in modern mathematics and will be equipped to proceed to research projects in PDEs, applied dynamics, representation theory, probability, and ergodic theory.
MATH4314 Representation Theory
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: MATH3966 Assumed knowledge: Familiarity with abstract algebra, specifically vector space theory and basic group theory, e.g., MATH2922 or MATH2961 or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Representation theory is the abstract study of the possible types of symmetry in all dimensions. It is a fundamental area of algebra with applications throughout mathematics and physics: the methods of representation theory lead to conceptual and practical simplification of any problem in linear algebra where symmetry is present. This unit will introduce you to the basic notions of modules over associative algebras and representations of groups, and the ways in which these objects can be classified. You will learn the special properties that distinguish the representation theory of finite groups over the complex numbers, and also the unifying principles which are common to the representation theory of a wider range of algebraic structures. By learning the key concepts of representation theory you will also start to appreciate the power of category-theoretic approaches to mathematics. The mental framework you will acquire from this unit of study will enable you both to solve computational problems in linear algebra and to create new mathematical theory.
MATH4315 Variational Methods
This unit of study is not available in 2022
Credit points: 6 Session: Semester 2 Classes: lectures 3 hrs/week, tutorial 1 hr/week Assumed knowledge: Assumed knowledge of MATH2X23 or equivalent; MATH4061 or MATH3961 or equivalent; MATH3969 or MATH4069 or MATH4313 or equivalent. That is, real analysis, basic functional analysis and some acquaintance with metric spaces or measure theory. Assessment: 2 x homework assignments (20% each), final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Variational and spectral methods are foundational in mathematical models that govern the configurations of many physical systems. They have wide-ranging applications in areas such as physics, engineering, economics, differential geometry, optimal control and numerical analysis. In addition they provide the framework for many important questions in modern geometric analysis. This unit will introduce you to a suite of methods and techniques that have been developed to handle these problems. You will learn the important theoretical advances, along with their applications to areas of contemporary research. Special emphasis will be placed on Sobolev spaces and their embedding theorems, which lie at the heart of the modern theory of partial differential equations. Besides engaging with functional analytic methods such as energy methods on Hilbert spaces, you will also develop a broad knowledge of other variational and spectral approaches. These will be selected from areas such as phase space methods, minimax theorems, the Mountain Pass theorem or other tools in the critical point theory. This unit will equip you with a powerful arsenal of methods applicable to many linear and nonlinear problems, setting a strong foundation for understanding the equilibrium or steady state solutions for fundamental models of applied mathematics.
MATH4411 Applied Computational Mathematics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: A thorough knowledge of vector calculus (e.g., MATH2X21) and of linear algebra (e.g., MATH2X22). Some familiarity with partial differential equations (e.g., MATH3X78) and mathematical computing (e.g., MATH3X76) would be useful Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Computational mathematics fulfils two distinct purposes within Mathematics. On the one hand the computer is a mathematician's laboratory in which to model problems too hard for analytical treatment and to test existing theories; on the other hand, computational needs both require and inspire the development of new mathematics. Computational methods are an essential part of the tool box of any mathematician. This unit will introduce you to a suite of computational methods and highlight the fruitful interplay between analytical understanding and computational practice. In particular, you will learn both the theory and use of numerical methods to simulate partial differential equations, how numerical schemes determine the stability of your method and how to assure stability when simulating Hamiltonian systems, how to simulate stochastic differential equations, as well as modern approaches to distilling relevant information from data using machine learning. By doing this unit you will develop a broad knowledge of advanced methods and techniques in computational applied mathematics and know how to use these in practice. This will provide a strong foundation for research or further study.
MATH4412 Advanced Methods in Applied Mathematics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: A thorough knowledge of vector calculus (e.g., MATH2X21) and of linear algebra (e.g., MATH2X22). Some familiarity with partial differential equations (e.g., MATH3X78) and mathematical computing (e.g., MATH3X76) would be useful Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Mathematical approaches to many real-world problems are underpinned by powerful and wide ranging mathematical methods and techniques that have become standard in the field and should be in the toolbag of all applied mathematicians. This unit will introduce you to a suite of those methods and give you the opportunity to engage with applications of these methods to well-known problems. In particular, you will learn both the theory and use of asymptotic methods which are ubiquitous in applications requiring differential equations or other continuous models. You will also engage with methods for probabilistic models including information theory and stochastic models. By doing this unit you will develop a broad knowledge of advanced methods and techniques in applied mathematics and know how to use these in practice. This will provide a strong foundation for using mathematics in a broad sweep of practical applications in research, in industry or in further study.
MATH4413 Applied Mathematical Modelling
This unit of study is not available in 2022
Credit points: 6 Session: Semester 1 Classes: 2 x 1hr lectures per week, 2 x 1hr tutorials/workshops per week (indicative program) Assumed knowledge: MATH2X21 and MATH3X63 or equivalent. That is, a knowledge of linear and simple nonlinear ordinary differential equations and of linear, second order partial differential equations. Assessment: tutorial participation (10%), homework assignments (20%), presentation assignment (20%), final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Applied Mathematics harnesses the power of mathematics to give insight into phenomena in the wider world and to solve practical problems. Modelling is the key process that translates a scientific or other phenomenon into a mathematical framework through applying suitable assumptions, identifying important variables and deriving a well-defined mathematical problem. Mathematicians then use this model to explore the real-world phenomenon, including making predictions. Good mathematical modelling is something of an art and is best learnt by example and by writing, refining and analysing your own models. This unit will introduce you to some classic mathematical models and give you the opportunity to analyse, explore and extend these models to make predictions and gain insights into the underlying phenomena. You will also engage with modelling in depth in at least one area of application. By doing this unit you will develop a broad knowledge of advanced mathematical modelling methods and techniques and know how to use these in practice. This will provide a strong foundation for applying mathematics and modelling to many diverse applications and for research or further study.
MATH4414 Advanced Dynamical Systems
This unit of study is not available in 2022
Credit points: 6 Session: Semester 2 Classes: lecture 3 hrs/week, computer lab/tutorial 1 hr/week Assumed knowledge: Assumed knowledge is vector calculus (e.g., MATH2X21), linear algebra (e.g., MATH2X22), dynamical systems and applications (e.g., MATH4063 or MATH3X63) or equivalent. Some familiarity with partial differential equations (e.g., MATH3978) and mathematical computing (e.g., MATH3976) is also assumed. Assessment: 2 x homework assignments (40%), final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
In applied mathematics, dynamical systems are systems whose state is changing with time. Examples include the motion of a pendulum, the change in the population of insects in a field or fluid flow in a river. These systems are typically represented mathematically by differential equations or difference equations. Dynamical systems theory reveals universal mechanisms behind disparate natural phenomena. This area of mathematics brings together sophisticated theory from many areas of pure and applied mathematics to create powerful methods that are used to understand and control the dynamical building blocks which make up physical, biological, chemical, engineered and even sociological systems. By doing this unit you will develop a broad knowledge of methods and techniques in dynamical systems, and know how to use these to analyse systems in nature and in technology. This will provide a strong foundation for using mathematics in a broad sweep of applications and for research or further study.
MATH4511 Arbitrage Pricing in Continuous Time
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with basic probability (eg STAT2X11), with differential equations (eg MATH3X63, MATH3X78), achievement at credit level or above in MATH3XXX or STAT3XXX units or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The aim of Financial Mathematics is to establish a theoretical background for building models of securities markets and provides computational techniques for pricing financial derivatives and risk assessment and mitigation. Specialists in Financial Mathematics are widely sought after by major investment banks, hedge funds and other, government and private, financial institutions worldwide. This course is foundational for honours and masters programs in Financial Mathematics. Its aim is to introduce the basic concepts and problems of securities markets and to develop theoretical frameworks and computational tools for pricing financial products and hedging the risk associated with them. This unit will focus on two ideas that are fundamental for Financial Mathematics. You will learn how the concept of arbitrage and the concept of martingale measure provide a unified approach to a large variety of seemingly unrelated problems arising in practice. You will also learn how to use the wide range of tools required by Financial Mathematics, including stochastic calculus, partial differential equations, optimisation and statistics. By doing this unit, you will learn how to formulate problems that arise in finance as mathematical problems and how to solve them using the concepts of arbitrage and martingale measure. You will also learn how to choose an appropriate computational method and devise explicit numerical algorithms useful for a practitioner.
MATH4512 Stochastic Analysis
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Students should have a sound knowledge of probability theory and stochastic processes from, for example, STAT2X11 and STAT3021 or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Capturing random phenomena is a challenging problem in many disciplines from biology, chemistry and physics through engineering to economics and finance. There is a wide spectrum of problems in these fields, which are described using random processes that evolve with time. Hence it is of crucial importance that applied mathematicians are equipped with tools used to analyse and quantify random phenomena. This unit will introduce an important class of stochastic processes, using the theory of martingales. You will study concepts such as the Ito stochastic integral with respect to a continuous martingale and related stochastic differential equations. Special attention will be given to the classical notion of the Brownian motion, which is the most celebrated and widely used example of a continuous martingale. By completing this unit, you will learn how to rigorously describe and tackle the evolution of random phenomena using continuous time stochastic processes. You will also gain a deep knowledge about stochastic integration, which is an indispensable tool to study problems arising, for example, in Financial Mathematics.
MATH4513 Topics in Financial Mathematics
This unit of study is not available in 2022
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Students are expected to have working knowledge of Stochastic Processes, Stochastic Calculus and mathematical methods used to price options and other financial derivatives, for example as in MATH4511 or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Securities and derivatives are the foundation of modern financial markets. The fixed-income market, for example, is the dominant sector of the global financial market where various interest-rate linked securities are traded, such as zero-coupon and coupon bonds, interest rate swaps and swaptions. This unit will investigate short-term interest rate models, the Heath-Jarrow-Morton approach to instantaneous forward rates and recently developed models of forward London Interbank Offered Rates (LIBORs) and forward swap rates. You will learn about pricing and hedging of credit derivatives, another challenging and practically important problem and become familiar with stochastic models for credit events, dependent default times and credit ratings. You will learn how to value and hedge single-name and multi-name credit derivatives such as vulnerable options, corporate bonds, credit default swaps and collateralized debt obligations. You will also learn about the most recent developments in Financial Mathematics, such as robust pricing and nonlinear evaluations. By doing this unit, you will get a solid grasp of mathematical tools used in valuation and hedging of fixed income securities, develop a broad knowledge of advanced quantitative methods related to interest rates and credit risk and you will learn to use powerful mathematical tools to address important real-world quantitative problems in the finance industry.
Textbooks
1. M. Musiela and M. Rutkowski, "Martingale Methods in Financial Modelling." Springer, Berlin, 2nd Edition, 2005. 2. T. R. Bielecki, M. Jeanblanc and M. Rutkowski, "Credit Risk Modeling." Osaka University Press, Osaka, 2009.
NANO4001 Modern Nanoscience
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including NANO2002 Assumed knowledge: It is strongly recommended that you have completed a major in Chemistry or Physics before attempting the unit Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Nanoscience is considered the cornerstone of future science and technology covering every aspect of human life from health and medicine (implantable biocompatible devices to minor and cure diseases) to autonomous systems (neuromorphic chips) to quantum information processing devices (quantum computers, quantum internet). This unit provides a more in-depth knowledge of modern Nanoscience, deepening your knowledge of the advances in Physics, Chemistry and Biomedical Engineering at the nanoscale. You will be immersed in ideas from experts and leaders in the fields of nanoscience, as invited Guest Lecturers. By undertaking this unit, you will develop an up-to-date and deep overview of the research which constitutes the epicentre of modern nanoscience and the cornerstone of the future Nanotechnology. For example, by learning the electrical, mechanical and optical properties of graphene as well as the latest scientific endeavours in Nanophotonics, Nanocatalysis and Tissue Engineering it will be stimulated in developing future and commercial Nanotechnological solutions. This will enable you to play a role in finding nanoscience solutions to global challenges that impact our lives.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
NEUR4001 Advanced Seminars in Neuroscience
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study, including a minimum of 24 credit points at the 3000- or 4000-level Prohibitions: NEUR3004 or NEUR3904 Assumed knowledge: Advanced knowledge of the structure and function of multicellular organisms, or a background in bioengineering or biophysics or biodesign Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Medicine and Health
Note: Refer to the unit of study outline https://www.sydney.edu.au/units
Research in neuroscience has made tremendous advances in our understanding of the nervous system and its function in health and disease, however we are still far from fully understanding the form and function of the billions of neurons and the trillions of synapses that make up the brain and spinal cord. This unit is designed to introduce you to cutting edge issues in neuroscience Topics will include imaging pain, emotions, cortical development and plasticity, colour vision, addiction and stress, memory and cognitive processing, neuropsychiatric conditions and neurodegenerative disorders. This unit of study will use small group lectures, seminar groups and short research-based projects to engage students in authentic enquiry. You will be encouraged to explore several specific areas of neuroscience research and develop analytic skills and thinking about the processes and methods of doing neuroscience and engage you in debate and discussion, rather than learn facts. You will shape opinion by listening to the ideas of others and improve your skills and insights into problem solving. You will present your views and ideas, listen to those of others and through this appreciate divergent thinking.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
PHYS4015 Neural Dynamics and Computation
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144cp of units including (MATH1x01 or MATH1x21 or MATH1906 or MATH1931) and MATH1x02 Assumed knowledge: First- and second-year physics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
What is the neural code? How do neural circuits communicate information? What happens in our brain when we make a decision? Computational modelling and theoretical analysis are important tools for addressing these fundamental questions and for determining the functioning mechanisms of the brain. This interdisciplinary unit will provide a thorough and up-to-date introduction to the fields of computational neuroscience and neurophysics. You will learn to develop basic models of how neurons process information and perform quantitative analyses of real neural circuits in action. These models include neural activity dynamics at many different scales, including the biophysical, the circuit and the system levels. Basic data analytics of neural recordings at these levels will also be explored. In addition, you will become familiar with the computational principles underlying perception and cognition, and algorithms of neural adaptation and learning, which will provide knowledge for building-inspired artificial intelligence. Your theoretical learning will be complemented by inquiry-led practical classes that reinforce the above concepts. By doing this unit, you will develop essential modelling and quantitative analysis skills for studying how the brain works.
PHYS4016 Bayesian Data Inference and Machine Learning
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including (12cp of MATH1XXX) or [(6cp of MATH1XXX) and DATA1X01] Assumed knowledge: 48 credit points of 3000-level units of study and programming experience in Python Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The need to make sense of confusing, incomplete and noisy data is a problem central to virtually all branches of science. The underlying requirement is to draw robust, unbiased and insightful inferences from the data.After taking this course you should have a working knowledge of common data inference and model-fitting methods, and of machine learning techniques. You should be able to implement the model-fitting algorithms discussed here in your own code and use it to determine parameters from incomplete or noisy data. You will have a conceptual understanding of modern machine-learning techniques, including basic neural networks, and be able to implement your own network to solve a problem. Moreover, you will have the prerequisite knowledge to implement more complex machine learning architectures such as deep learning, using the wide range of available tools. The course is aimed to equip physicists (and other scientists) with practical tools to be deployed in their work, rather than delivering more theoretical content.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
PHYS4017 Practitioner Physics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including 12cp of PHYS1XXX Assumed knowledge: 48cp of 3000-level units, and a major or minor in Physics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Physicists are actively applying their knowledge and technical skills in response to the major challenges of our time, such as environmental change brought about by our soaring demand for energy from finite resources. Their efforts can be found in everyday technology, such as smartphones and GPS devices, which would not exist today without physics. Physics, which underlies the whole of science and technology, has changed our life and society and will change our life and society in the future. This unit will connect the fundamental physics to the modern and future technologies in information and communication technology, energy and sustainability, medicine and health. The information and communication technology module will cover quantum computing, quantum communication, spintronics, optical technology. The energy and sustainability module will cover energy harvesting, energy conversion, energy storage, renewable energy and carbon capture. The medicine and health module will cover nuclear magnetic resonance, medical Imaging, radiation and dosimetry. You will learn the physical concepts and apply these concepts to understanding and evaluating modern technologies in information and communication technology, energy and sustainability, medicine and health. You will also how to track the technologies in principle, and how to predict their impact, and on what time scale. By doing this unit you will develop a deep understanding of these modern and future technologies and prepare yourselves for the related employment.
PHYS4036 Condensed Matter and Particle Phys (Hons)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units of study including [6 credit points of (PHYS3X34 or PHYS3X90 or PHYS3991) and 6 credit points of (PHYS3X42 or PHYS3X43 or PHYS3X44)] Prohibitions: PHYS3036 or PHYS3936 or PHYS3080 or PHYS3980 or PHYS3068 or PHYS3968 or PHYS3069 or PHYS3969 or PHYS3074 or PHYS3974 Assumed knowledge: (MATH2X21 or MATH2X61 or MATH2067). Students will need to have some knowledge of special relativity, for example from prior study of PHYS2013 or PHYS2913, or from studying Chapter 12 of "Introduction to Electrodynamics" by D.J. Griffith Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Condensed matter physics is the science behind semiconductors and all modern electronics, while particle physics describes the very fabric of our Universe. Surprisingly these two seemingly separate aspects of physics use in part very similar formalisms. This unit provides an advanced introduction to both these fields, sharing some coursework with PHYS3936, but going into much more depth through a literature review project offering a critical view of a current research topic in condensed matter physics or particle physics. The particle physics part will introduce the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions. You will gain understanding of extensions to the currently accepted Standard Model of particle physics, and on the relationships between high energy particle physics, cosmology and the early Universe. The condensed matter part will cover the physics that underlies the electromagnetic, thermal, and optical properties of solids. Lectures will include discoveries and new developments in semiconductors, nanostructures, magnetism, and superconductivity, topics which will also be explored in computer lab tutorials. In addition, you will carry out an in-depth critical analysis on a topic of your choice in condensed matter physics and/or particle physics through a literature review research project. In completing this unit, you will gain understanding of the foundations of modern physics and develop research and critical thinking skills.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
PHYS4037 Plasma and Astrophysics (Hons)
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units including (PHYS3X35 or PHYS3X40 or PHYS3941) Prohibitions: PHYS3037 or PHYS3937 or PHYS3042 or PHYS3942 or PHYS3043 or PHYS3943 or PHYS3044 or PHYS3944 Assumed knowledge: (MATH2X21 or MATH2X61 or MATH2067) Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Looking at the sky it is easy to forget our Sun and the stars are continuous giant nuclear explosions, or that nebulas are vast fields of ionized gases, all obeying the same laws of physics as anything else in the universe. Astrophysics gives us great insight in the larger structures of the universe, and plasma physics is key to understanding matter in space, but also in fusion reactors or for advanced material processing. This unit will provide an advanced introduction to astrophysics and plasma physics, complemented by an extensive literature research project critically investigating a current research topic in plasma physics or astrophysics. You will study three key concepts in astrophysics: the physics of radiation processes, stellar evolution, and binary stars. You will gain understanding of the physics of fundamental phenomena in plasmas. Examples will be given, where appropriate, of the application of these concepts to naturally occurring and man-made plasmas. In addition, you will carry out an in-depth critical analysis of a topic or your choice in astrophysics and/or plasma physics through a literature review research project. In completing this unit you will gain understanding of the foundations of modern physics and develop research and critical thinking skills.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
PHYS4121 Advanced Electrodynamics and Photonics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average of at least 65 in 144 cp of units including (PHYS3x35 or PHYS3x40 or PHYS3941) Assumed knowledge: A major in physics including third-year electromagnetism and third-year optics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
The electromagnetic force is the only one of the four fundamental forces of nature that is compatible with the four realms of mechanics (classical, quantum, relativistic and relativistic quantum mechanics) and therefore, the study of electrodynamics is fundamental to understanding how the laws of physics may be unified, but also to identify gaps in our knowledge. Drawing upon the foundations of classical electromagnetism and optics laid in the undergraduate physics major, this unit provides an advanced-level treatment of topics in electrodynamics and photonics underlying cutting-edge modern research. Starting with the mathematically elegant covariant formalism of the Maxwell equations, from which special relativity derives, the unit covers topics such as the origin of radiation from relativistic particles and from atoms, which are important in astrophysics and particle physics as well as optical and quantum physics. This then introduces the theme of light-matter interactions, which reveals how light can be manipulated and controlled, leading to fascinating phenomena such as optical tweezers, topological insulators and metamaterials. The unique properties and applications of confined electromagnetic waves and their nonlinear interactions are studied in depth, followed by the physics of laser light. The unit is completed with the contemporary research topic of quantum optics. In studying these topics, you will learn advanced theoretical concepts and associated mathematical methods in physics, including tensor calculus, Greens function method, multipole expansion in field theory, and coupled mode theory. By doing this unit, you will be able to synthesise your knowledge of physics and gain new insights into how to identify and apply relevant aspects of physics-based concepts and techniques to solve modern research problems.
PHYS4122 Astrophysics and Space Science
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average of at least 65 in 144 cp of units Assumed knowledge: A major in physics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Modern astrophysics covers a vast range of scales, from processes within the Solar System which allow for direct testing, to processes that take place in distant places and times, such as the formation of galaxies. Nonetheless, the same physics underpins all of these situations: the plasma of the solar system meets the interstellar medium, which provides the building blocks for galaxies. This unit provides an advanced-level treatment of three major topics in astrophysics: the formation and evolution of galaxies, the structure and morphology of galaxies, and the physics of plasma in our Solar System. You will learn about the behaviour of gas and plasma throughout the Universe, and their effect on phenomena from galaxy structure to space weather. By doing this unit, you will learn how to synthesise your knowledge of physical concepts and processes, and how these concepts and techniques are used to solve modern research problems.
PHYS4123 General Relativity and Cosmology
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average of at least 65 in 144 cp of units Assumed knowledge: A major in physics and knowledge of special relativity Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Einstein's General Theory of Relativity represents a pinnacle of modern physics, providing the most accurate description of the action of gravity across the cosmos. To Newton, gravity was simply a force between masses, but Einstein's mathematical language describes gravity in terms of the bending and stretching of space-time. In this course, students will review Einstein's principle of relativity, and the mathematical form of special relativity, and the flat space-time this implies. This will be expanded and generalised to consider Einstein's principle of equivalence and the implications for particle and photon motion with curved space-time. Students will explore the observational consequences of general relativity in several space-time metrics, in particular the Schwarzschild black hole, the Morris-Thorne wormhole, and the Alcubierre warp drive, elucidating the nature of the observer in determining physical quantities. Building on this knowledge, students will understand Einstein's motivation in determining the field equations, relating the distribution of mass and energy to the properties of space-time. Students will apply the field equations, including deriving the cosmological Friedmann-Robertson-Walker metric from the assumption of constant curvature, and using this to determine the universal expansion history and key observables. Students will obtain a complete picture of our modern cosmological model, understanding the constituents of the universe, the need for inflation in the earliest epochs, and the ultimate fate of the cosmos.
PHYS4124 Physics of the Standard Model
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average of at least 65 in 144 cp of units including (PHYS3X34 or PHYS3X42 or PHYS3X43 or PHYS3X44) Assumed knowledge: A major in physics including third-year quantum physics and third-year particle physics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Our current understanding of the basic building blocks of matter and interactions between them is called the Standard Model of Particle Physics (SM). This most fundamental description of Nature incorporates three of the four basic interactions which govern how the Universe works, the electromagnetic, weak and strong interactions. This unit investigates the mathematical underpinnings of the SM, a quantum field theory constructed upon fundamental notions of symmetry including Lorentz and local gauge invariance. It also explores the notion of spontaneous symmetry breaking, the Higgs field and the way that fundamental particles acquire mass. The interplay between theory and experiment, which has driven the SM's development, is highlighted. Finally, limitations of the model and possible extensions which could overcome them are discussed. You will learn how the SM is constructed based on symmetry principles, quantum fields and their space-time derivatives; how to derive equations of motion for the fields using the Action Principle; and how predictions for physical observables such as cross sections and decay rates can be calculated starting from the SM Lagrangian density. By studying examples of both recent and historically significant measurements confirming or challenging the SM, you will gain experience in reading and interpreting the scientific literature. Through this unit you will develop an appreciation of humankind's most contemporary and successful attempt to describe Nature in terms of fundamental laws.
PHYS4125 Quantum Field Theory
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average of at least 65 in 144 cp of units including (PHYS3x34 or PHYS3x42 or PHYS3x43 or PHYS3x44 or PHYS3x35 or PHYS3x40 or PHYS3941 or PHYS3x36 or PHYS3x68 or MATH3x63 or MATH4063 or MATH3x78 or MATH4078) Assumed knowledge: A major in physics including third-year quantum physics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Quantum Field Theory (QFT) is the basic mathematical framework that is used for a consistent quantum-mechanical description of relativistic systems, such as fundamental subatomic particles in particle physics. The tools of QFT are also used for description of quasi-particles and critical phenomena in condensed matter physics and other related fields. This course introduces major concepts and technical tools of QFT. The course is largely self-contained and covers also Lagrangian and Hamiltonian formalisms for classical fields, elements of group theory and path integral formulation of quantum mechanics. The main topics include second quantization of various fields and description of their interactions, with the main focus on the most accurate fundamental theory of quantum electromagnetism. The last part of the course deals the concept of the renormalisation group, and its applications to critical phenomena in condensed matter systems. By completing this course, you will obtain knowledge of major concepts and tools of contemporary fundamental physics, that can be employed in a wide range of physics and physics-based research, starting from the description of profound effects in condensed matter physics and ending by the understanding of basic building blocks of the Universe .
Textbooks
L.H. Ryder, Quantum Field Theory, Cambridge University Press, (1996), F. Mandl and G. Shaw, Quantum FieldTheory, Wiley-Blackwell, (2010), M.E. Peskin and D.V. Schroeder: An Introduction to quantum field theory, Adison-Wesley (1995), T. Lancaster and S. J. Blundell Quantum Field Theory for the Gifted Amateur, Oxford University Press, (2014)
PHYS4126 Quantum Nanoscience
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: An average of at least 65 in 144 cp of units Assumed knowledge: A major in physics including third-year quantum physics and third-year condensed matter physics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Modern nanofabrication and characterisation techniques now allow us to build devices that exhibit controllable quantum features and phenomena. We can now demonstrate the thought experiments posed by the founders of quantum mechanics a century ago, as well as explore the newest breakthroughs in quantum theory. We can also develop new quantum technologies, such as quantum computers. This unit will investigate the latest research results in quantum nanoscience across a variety of platforms. You will be introduced to the latest research papers in the field, published in high-impact journals, and gain an appreciation and understanding of the diverse scientific elements that come together in this research area, including materials, nanofabrication, characterisation, and fundamental theory. You will learn to assess an experiment's demonstration of phenomena in quantum nanoscience, such as quantum coherence and entanglement, mesoscopic transport, exotic topological properties, etc. You will acquire the ability to approach a modern research paper in physics, and to critically analyse the results in the context of the wider scientific community. By doing this unit you will develop the capacity to undertake research, experimental and/or theoretical, in quantum nanoscience.
PSYC4000 Foundations of Professional Psychology
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive August Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: [24cp of PSYC3XXX including PSYC3010] or [18cp of PSYC3XXX including PSYC3010 and (HPSC3023 or SCPU3001)] Corequisites: PSYC4104 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode Faculty: Science
Note: Departmental Permission is required
Foundations of Professional Psychology is designed to equip you with the knowledge, critical thinking and practical skills that provide the foundation for professional practice in psychology. It will build upon the background in psychological science established in the undergraduate Psychology program to develop your understanding and capacity for critical evaluation of the theoretical and empirical bases underpinning the construction, implementation and interpretation of major cognitive and personality assessment instruments, and the development and implementation of evidence-based psychological interventions. Through the lectures, practical activities and assessments, you will also develop an understanding of current regulatory and legal contexts, including the National Health Practitioner Regulation Act 2009, NSW, Co-Regulatory Jurisdiction Standards, and mandatory reporting requirements. You will also be introduced to the Australian National Practice Standards for the Mental Health Workforce. Lectures on ethical practice will cover key issues in the psychology profession's Code of Conduct including Professional Relationships and the importance of confidentiality, informed consent and record keeping. The implications of cultural diversity and the factors that need to be considered in culturally informed practice will also be illustrated and evaluated. This unit will meet the accreditation criteria for Honours programs in Psychology and provide students with the essential foundations for psychological practice in a range of contexts.
Textbooks
All resources will be made available through the Canvas LMS UoS site
PSYC4003 Health Psychology
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 6cp of PSYC3XXX and an additional 6cp of 3000-level units of study Assumed knowledge: Students who have not completed PSYC3020 may be required to do additional reading Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Comorbid physical and mental health conditions are increasingly prevalent, requiring complex management and specialised interdisciplinary care. Health Psychology, a subdiscipline of psychology, is a rapidly developing field of study which examines the inter-relationships between biological, psychological, and social/cultural factors that affect health, illness, and recovery - recognising that health is far more than the absence of disease. This unit of study will cover the central tenants of Health Psychology: the promotion and maintenance of health; causes and detection of illness; prevention and treatment of illness; and, improvement of healthcare systems and policy. You will develop advanced understanding of: the impact of all phases of illness on patients and their families; how psychological theories and methods are applied to assess patient/caregiver outcomes; importance of health literacy; and how communication between clinicians, patients and family can impact health outcomes. You will also gain industry-recognised skills to apply new evidence in practice to particular health concerns, as well as skills in disseminating research findings in the industry setting. This unit will challenge you to critically evaluate social, cultural, and political aspects of health disparities in Australia, and explore how the needs of the most vulnerable groups in society may be met. At the completion of the unit you will be able to contribute to the development and delivery of evidence-based healthcare programs aimed at addressing current healthcare needs and challenges, particularly in vulnerable populations.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
SOIL4000 Soil and Water in the Changing Environment
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 144 credit points of units including SOIL2005 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Our need to fulfill the demand of food and clean water for the world's population has changed how we interact with our soil, water, and environment. This change is represented by a strong signature detectable within the earth's systems, so much so that current scientific consensus classifies the current age as the 'Anthropocene', a new geological epoch driven by the activity of humanity and our impact on environmental systems. In this unit you will investigate how soil, water, and the environment have changed and how it will change into the future in the face of climate change and other anthropogenic forcings. You will evaluate the impact of anthropogenic activities, in terms of agricultural industry and land-use changes, on the environment. This evaluation will progress to the identification of signals of change in soil and water and a discussion of approaches that ensure that agriculture and our future can be sustainably developed. You will also discuss current research and technology focussed on mitigating this change. By doing this unit, you will develop an understanding of the impact of anthropogenic activities on soil and water and contribute to ideas on how we can create more sustainable and climate-resilient landscapes.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
SOMS4102 Communicating Ideas in Biomedical Science
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: SOMS4101 Assumed knowledge: A major in one of the following areas: Applied Medical Science; Immunology and Pathology; Biochemistry and Molecular Biology; Biology; Microbiology; Cell and Developmental Biology; Infectious Diseases; Pharmacology; Medicinal Chemistry; Neuroscience; Physiology; Anatomy and Histology; Genetics and Genomics; Quantitaive Life Science Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Medicine and Health
Note: Refer to the unit of study outline https://www.sydney.edu.au/units
The capacity to interpret a biological concept and communicate scientific findings is a fundamental skill underlying all facets of medical and health sciences. In this unit of study, you will develop the skills to critique a wide range of scientific literature from peer-reviewed articles to unsubstantiated independent web-site claims. You will learn how to critically assess the validity of scientific information to distinguish between rigorous, scientifically-supported claims and pseudoscience. You will also examine key concepts in data interpretation and evaluation in relation to medicine and health. This unit includes tasks that will enable you to clearly and independently communicate your own research findings both written and verbally to a range of audiences including politicians, the media, the general public and the wider scientific community. The skills taught in this unit will provide you with a solid foundation upon which you can forge a professional career in the health and medical communication sphere.
Textbooks
Refer to the unit of study outline https://www.sydney.edu.au/units
STAT4021 Stochastic Processes and Applications
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: STAT3011 or STAT3911 or STAT3021 or STAT3003 or STAT3903 or STAT3005 or STAT3905 or STAT3921 Assumed knowledge: Students are expected to have a thorough knowledge of basic probability and integral calculus and to have achieved at credit level or above in their studies in these topics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
A stochastic process is a mathematical model of time-dependent random phenomena and is employed in numerous fields of application, including economics, finance, insurance, physics, biology, chemistry and computer science. In this unit you will rigorously establish the basic properties and limit theory of discrete-time Markov chains and branching processes and then, building on this foundation, derive key results for the Poisson process and continuous-time Markov chains, stopping times and martingales. You will learn about various illustrative examples throughout the unit to demonstrate how stochastic processes can be applied in modelling and analysing problems of practical interest, such as queuing, inventory, population, financial asset price dynamics and image processing. By completing this unit, you will develop a solid mathematical foundation in stochastic processes which will become the platform for further studies in advanced areas such as stochastic analysis, stochastic differential equations, stochastic control and financial mathematics.
STAT4022 Linear and Mixed Models
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: STAT3012 or STAT3912 or STAT3022 or STAT3922 or STAT3004 or STAT3904 Assumed knowledge: Material in DATA2X02 or equivalent and MATH1X02 or equivalent; that is, a knowledge of applied statistics and an introductory knowledge to linear algebra, including eigenvalues and eigenvectors Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Classical linear models are widely used in science, business, economics and technology. This unit will introduce the fundamental concepts of analysis of data from both observational studies and experimental designs using linear methods, together with concepts of collection of data and design of experiments. You will first consider linear models and regression methods with diagnostics for checking appropriateness of models, looking briefly at robust regression methods. Then you will consider the design and analysis of experiments considering notions of replication, randomisation and ideas of factorial designs. Throughout the course you will use the R statistical package to give analyses and graphical displays. This unit includes material in STAT3022 Applied Linear Models, but has an additional component on the mathematical techniques underlying applied linear models together with proofs of distribution theory based on vector space methods.
STAT4023 Theory and Methods of Statistical Inference
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: STAT3013 or STAT3913 or STAT3023 or STAT3923 Assumed knowledge: STAT2X11 and (DATA2X02 or STAT2X12) or equivalent. That is, a grounding in probability theory and a good knowledge of the foundations of applied statistics Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
In today's data-rich world, more and more people from diverse fields need to perform statistical analyses, and indeed there are more and more tools to do this becoming available. It is relatively easy to "point and click" and obtain some statistical analysis of your data. But how do you know if any particular analysis is indeed appropriate? Is there another procedure or workflow which would be more suitable? Is there such a thing as a "best possible" approach in a given situation? All of these questions (and more) are addressed in this unit. You will study the foundational core of modern statistical inference, including classical and cutting-edge theory and methods of mathematical statistics with a particular focus on various notions of optimality. The first part of the unit covers aspects of distribution theory which are applied in the second part which deals with optimal procedures in estimation and testing. The framework of statistical decision theory is used to unify many of the concepts that are introduced in this unit. You will rigorously prove key results and apply these to real-world problems in laboratory sessions. By completing this unit, you will develop the necessary skills to confidently choose the best statistical analysis to use in many situations.
STAT4025 Time Series
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: STAT2X11 and (MATH1X03 or MATH1907 or MATH1X23 or MATH1933) Prohibitions: STAT3925 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
This unit will study basic concepts and methods of time series analysis applicable in many real world problems in numerous fields, including economics, finance, insurance, physics, ecology, chemistry, computer science and engineering. This unit will investigate the basic methods of modelling and analyzing of time series data (i.e. data containing serially dependence structure). This can be achieved through learning standard time series procedures on identification of components, autocorrelations, partial autocorrelations and their sampling properties. After setting up these basics, students will learn the theory of stationary univariate time series models including ARMA, ARIMA and SARIMA and their properties. Then the identification, estimation, diagnostic model checking, decision making and forecasting methods based on these models will be developed with applications. The spectral theory of time series, estimation of spectra using periodogram and consistent estimation of spectra using lag-windows will be studied in detail. Further, the methods of analyzing long memory and time series and heteroscedastic time series models including ARCH, GARCH, ACD, SCD and SV models from financial econometrics and the analysis of vector ARIMA models will be developed with applications. By completing this unit, students will develop the essential basis for further studies, such as financial econometrics and financial time series. The skills gained through this unit of study will form a strong foundation to work in a financial industry or in a related research organization.
STAT4026 Statistical Consulting
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: At least 12cp from STAT2X11 or STAT2X12 or DATA2X02 or STAT3XXX Prohibitions: STAT3926 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Practical field work: Face to face client consultation: approximately 1 - 1.5 hrs/week Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
In our ever-changing world, we are facing a new data-driven era where the capability to efficiently combine and analyse large data collections is essential for informed decision making in business and government, and for scientific research. Statistics and data analytics consulting provide an important framework for many individuals to seek assistance with statistics and data-driven problems. This unit of study will provide students with an opportunity to gain real-life experience in statistical consulting or work with collaborative (interdisciplinary) research. In this unit, you will have an opportunity to have practical experience in a consultation setting with real clients. You will also apply your statistical knowledge in a diverse collection of consulting projects while learning project and time management skills. In this unit you will need to identify and place the client's problem into an analytical framework, provide a solution within a given time frame and communicate your findings back to the client. All such skills are highly valued by employers. This unit will foster the expertise needed to work in a statistical consulting firm or data analytical team which will be essential for data-driven professional and research pathways in the future.
STAT4027 Advanced Statistical Modelling
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: (STAT3X12 or STAT3X22 or STAT4022) and (STAT3X13 or STAT3X23 or STAT4023) Assumed knowledge: A three year major in statistics or equivalent including familiarity with material in DATA2X02 and STAT3X22 (applied statistics and linear models) or equivalent Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Applied Statistics fundamentally brings statistical learning to the wider world. Some data sets are complex due to the nature of their responses or predictors or have high dimensionality. These types of data pose theoretical, methodological and computational challenges that require knowledge of advanced modelling techniques, estimation methodologies and model selection skills. In this unit you will investigate contemporary model building, estimation and selection approaches for linear and generalised linear regression models. You will learn about two scenarios in model building: when an extensive search of the model space is possible; and when the dimension is large and either stepwise algorithms or regularisation techniques have to be employed to identify good models. These particular data analysis skills have been foundational in developing modern ideas about science, medicine, economics and society and in the development of new technology and should be in the toolkit of all applied statisticians. This unit will provide you with a strong foundation of critical thinking about statistical modelling and technology and give you the opportunity to engage with applications of these methods across a wide scope of applications and for research or further study.
STAT4028 Probability and Mathematical Statistics
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: STAT4528 Assumed knowledge: STAT3X23 or equivalent: that is, a sound working and theoretical knowledge of statistical inference Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Probability Theory lays the theoretical foundations that underpin the models we use when analysing phenomena that involve chance. This unit introduces the students to modern probability theory and applies it to problems in mathematical statistics. You will be introduced to the fundamental concept of a measure as a generalisation of the notion of length and Lebesgue integration which is a generalisation of the Riemann integral. This theory provides a powerful unifying structure that bring together both the theory of discrete random variables and the theory of continuous random variables that were introduce to earlier in your studies. You will see how measure theory is used to put other important probabilistic ideas into a rigorous mathematical framework. These include various notions of convergence of random variables, 0-1 laws, and the characteristic function. You will then synthesise all these concepts to establish the Central Limit Theorem and also verify important results in Mathematical Statistics. These involve exponential families, efficient estimation, large-sample testing and Bayesian methods. Finally you will verify important convergence properties of the expectation-maximisation (EM) algorithm. By doing this unit you will become familiar with many of the theoretical building blocks that are required for any in-depth study in probability or mathematical statistics.
STAT4528 Probability and Martingale Theory
Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: STAT4028 Assumed knowledge: STAT2X11 or equivalent and STAT3X21 or equivalent; that is, a good foundational knowledge of probability and some acquaintance with stochastic processes Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day Faculty: Science
Probability Theory lays the theoretical foundations that underpin the models we use when analysing phenomena that involve chance. This unit introduces the students to modern probability theory (based on measure theory) that was developed by Andrey Kolmogorov. You will be introduced to the fundamental concept of a measure as a generalisation of the notion of length and Lebesgue integration which is a generalisation of the Riemann integral. This theory provides a powerful unifying structure that brings together both the theory of discrete random variables and the theory of continuous random variables that were introduced earlier in your studies. You will see how measure theory is used to put other important probabilistic ideas into a rigorous mathematical framework. These include various notions of convergence of random variables, 0-1 laws, conditional expectation, and the characteristic function. You will then synthesise all these concepts to establish the Central Limit Theorem and to thoroughly study discrete-time martingales. Originally used to model betting strategies, martingales are a powerful generalisation of random walks that allow us to prove fundamental results such as the Strong Law of Large Numbers or analyse problems such as the gambler's ruin. By doing this unit you will become familiar with many of the theoretical building blocks that are required for any in-depth study in probability, stochastic systems or financial mathematics.