University of Sydney Handbooks - 2020 Archive

Download full 2020 archivePage archived at: Tue, 27 Oct 2020

Sustainability and Environmental Engineering

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Master of Engineering majoring in Sustainability and Environmental Engineering

To qualify for the award of the Master of Engineering in this specialisation, a candidate must complete 72 credit points, including:
1. 24 credit points of Core units
2. 24 credit points of Specialist units
3. A minimum of 12 credit points of Research units
4. A maximum of 12 credit points of Elective units
Candidates who have been granted 24 credit points of Reduced Volume Learning (RVL), must complete 48 credit points including:
1. A minimum of 12 credit points of Core units
2. A minimum of 24 credit points of Specialist units
3. A minimum of 12 credit points of Research units
– Elective units are not available for candidates with RVL

Core units

ENGG5102
Entrepreneurship for Engineers
6    A Some limited industry experience is preferred but not essential.
N ELEC5701
Semester 1
ENGG5202
Sustainable Design, Eng and Mgt
6    A General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics
Semester 1
ENGG5103
Safety Systems and Risk Analysis
6      Semester 2
PMGT5871
Project Process Planning and Control
6    N PMGT6871
Intensive January
Intensive July
Semester 1
Semester 2

Specialist units

AMME5101
Energy and the Environment
6    A Students are expected to be familiar with the basic laws of thermodynamics, fluid mechanics and heat transfer
P MECH3260 OR MECH9260 or MECH8260 OR AERO3261 OR AERO9261 or AERO8261
Semester 1
CHNG5003
Green Engineering
6    A Completion of 72 cp in science, engineering or equivalent.
Semester 2
CHNG5004
Particles and Surfaces
6    A Enrolment in this unit of study assumes that all 3000 level core chemical engineering units have been successfully completed.
Semester 1
CHNG5005
Wastewater Engineering
6    A Enrolment in this unit assumes that the studenthas successfully completed CHNG1103 (Mass and Energy Balances), CHNG2801 (Fluid Mechanics), CHNG2802 (Applied Mathematics), CHNG3803 (Chemical and Biological Process Design), CHNG3804 (Biochemical Engineering) and CHNG3805 (Particle Mechanics) or equivalent.
Semester 1
CHNG5006
Advanced Wastewater Engineering
6    A CHNG5005 OR CHNG3804.
Semester 2
CHNG5008
Nanotechnology in Chemical Engineering
6    A 12cp CHEM2xxx
Semester 2
CHNG5601
Membrane Science
6      Semester 1
CHNG5604
Advanced Membrane Engineering
6    A CHNG5601
Semester 2
ELEC5206
Sustainable Energy Systems
6    A Following concepts are assumed knowledge for this unit of study: familiarity with transformers, ac power, capacitors and inductors, electric circuits such as three-phase circuits and circuits with switches, and basic electronic circuit theory.
Semester 2
MECH5275
Renewable Energy
6    A The student will need a sound background in advanced level fluid mechanics, thermodynamics and heat transfer. In particular, students should be able to analyse fluid flow in turbomachinery; perform first and second law thermodynamic analysis of energy conversion systems, including chemically reacting systems; and perform advanced level calculations of conductive and convective and radiative heat transfer, including radiative spectral analysis.
P (MECH3260 AND MECH3261) OR (AERO3260 AND AERO3261) OR (MECH9260 AND MECH9261) OR (MECH8260 and MECH8261) OR (AERO9260 AND AERO9261) OR (AERO8260 and AERO8261). Students claiming to have prerequisite knowledge based on study at other institutions must contact the unit of study coordinator before enrolling in this unit and may be required to sit a pre-exam to demonstrate that they have the necessary knowledge and skills to undertake this advanced level unit.

Note: Department permission required for enrolment

Semester 2
Exchange units may be taken as Specialist units with the approval of the Program Director.

Research units

CHNG5020
Capstone Project A
6    A (CHNG9301 OR CHNG5801) AND (CHNG9302 OR CHNG5802) AND (CHNG9303 OR CHNG5803) AND (CHNG9305 OR CHNG5805) AND (CHNG9306 OR CHNG5806).
P 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study).
N CHNG5222 OR CHNG5223 OR CHNG5205
Semester 1
Semester 2
CHNG5021
Capstone Project B
6    A Enrolment in this unit of study assumes that Capstone Project A has been successfully completed.
C CHNG5020
N CHNG5022 OR CHNG5222 OR CHNG5223 OR CHNG5205
Semester 1
Semester 2
CHNG5022
Capstone Project B Extended
12    P 24 credit points in the Master of Engineering and WAM >=70, or 96 credit points in the Master of Professional Engineering and WAM >=70, or 48cp from MPE(Accel) program and WAM >=70
C CHNG5020
N CHNG5021 OR CHNG5222 OR CHNG5223

Note: Department permission required for enrolment
Permission required for semester 1 or 2 based on achievement in Capstone Project A and taking other program requirements into consideration.
Semester 1
Semester 2
CHNG5222
Dissertation A
12    N ENGG5220 OR ENGG5221 OR CHNG5020 OR CHNG5021 OR CHNG5022

Note: Department permission required for enrolment
In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
Semester 1
Semester 2
CHNG5223
Dissertation B
12    C CHNG5222
N ENGG5220 OR ENGG5221 OR CHNG5020 OR CHNG5021 OR CHNG5022

Note: Department permission required for enrolment
In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
Semester 1
Semester 2
With permission from the Program Director students progressing with distinction (75%) average or higher results may replace CHNG5020, CHNG5021 and 12 credit points of electives with CHNG5222 & CHNG5223, Dissertation A & B.
A candidate who has been granted RVL and who is eligible to undertake the extended capstone project or dissertation may be granted exemption of up to 12 credit points of specialist units.

Elective units

Specialist units may also be taken as Elective units. Other Postgraduate units in the Faculty may be taken as Elective units with the approval of the Program Director.
CHNG5001
Process Systems Engineering
6    A 1000 level physics and mathematics (differential equations). Use of mathematical and/or computer-based modelling tools and techniques. Feedback control concepts and principles as taught in CHNG3802/CHNG9302 or similar courses. Students who are unsure about meeting these requirements should contact the unit coordinator for advice.


This unit of study is for Masters students and can be selected as an elective by 4th year students.
Semester 2
CHNG5603
Advanced Process Modelling and Simulation
6    A It is assumed that students have a general knowledge of: (MATH1001 OR MATH1021) AND (MATH1003 OR MATH1023) AND (CHNG2802 OR MATH2XXX)


This course is for Master degree students and also is offered as an elective course for fourth year students. Some lectures my be given by a guest lecturer.
Semester 1
CHNG5605
Bio-Products: Laboratory to Marketplace
6   

This course is for Master degree students and also is offered as an elective course for fourth year students.
Semester 2
CIVL5670
Reservoir, Stream and Coastal Engineering
6    A (CIVL3612 OR CIVL9612) AND MATH2061
Semester 1

For more information on degree program requirements visit CUSP (https://cusp.sydney.edu.au).