University of Sydney Handbooks - 2020 Archive

Download full 2020 archivePage archived at: Tue, 27 Oct 2020

Biomedical Engineering

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Master of Engineering majoring in Biomedical Engineering

To qualify for the award of the Master of Engineering in this specialisation, a candidate must complete 72 credit points, including:
1. 24 credit points of Core units
2. 24 credit points of Specialist units
3. A minimum of 12 credit points of Research units
4. A maximum of 12 credit points of Elective units
Candidates who have been granted 24 credit points of Reduced Volume Learning (RVL), must complete 48 credit points including:
1. A minimum of 12 credit points of Core units
2. A minimum of 24 credit points of Specialist units
3. A minimum of 12 credit points of Research units
– Elective units are not available for candidates with RVL

Core units

ENGG5102
Entrepreneurship for Engineers
6    A Some limited industry experience is preferred but not essential.
N ELEC5701
Semester 1
ENGG5202
Sustainable Design, Eng and Mgt
6    A General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics
Semester 1
ENGG5103
Safety Systems and Risk Analysis
6      Semester 2
PMGT5871
Project Process Planning and Control
6    N PMGT6871
Intensive January
Intensive July
Semester 1
Semester 2

Specialist units

BMET5907
Orthopaedic and Surgical Engineering
6    A (AMME2302 OR AMME9302 OR AMME1362) AND (MECH2901 OR BMET2901 OR AMME9901 OR BMET9901) AND (MECH3921 OR BMET3921 OR AMME5921 OR BMET5921) Basic concepts in engineering mechanics - statics; dynamics; and solid mechanics. Basic concepts in materials science; specifically with regard to types of materials and the relation between properties and microstructure. A basic understanding of human biology and anatomy.
N MECH4902 OR MECH5907
Semester 2
BMET5931
Nanomaterials in Medicine
6    A [[(BIOL1xxx OR MBLG1xxx) AND CHEM1xxx AND PHYS1xxx] OR [(AMME1961 OR BMET1961)] AND (MECH2901 OR BMET2901)]] AND (NANO2xxx OR AMME1362)
N AMME5931
Semester 1
BMET5958
Nanotechnology in Biomedical Engineering
6    A (MECH3921 OR BMET3921 OR AMME5921 OR BMET5921)
N AMME5958
Semester 2
BMET5962
Introduction to Mechanobiology
6    A 6 credit points of 1000-level biology, 6 credit points of 1000-level chemistry and 6 credit points of 2000-level physiology or equivalent
N AMME5962
Semester 2
BMET5992
Regulatory Affairs in the Medical Industry
6    A MECH3921 OR BMET3921 OR AMME5921 OR BMET5921 and 6cp of 1000-level Chemistry and 6cp of Biology units
N AMME4992 OR AMME5992
Semester 2
BMET5995
Advanced Bionics
6    A AMME5921 OR BMET5921 OR MECH3921 OR BMET3921
N AMME5995 OR AMME5951 OR BMET5951
Semester 1
BMET9921
Biomedical Engineering Technology
6    A 1000-level biology, 1000-level materials science and some engineering design
N MECH3921 OR BMET3921 OR AMME5921 OR BMET5921
Semester 2
BMET9961
Biomechanics and Biomaterials
6    A AMME9901 or BMET9901 or 6 credit points of junior biology, 6 credit points of junior chemistry, 6 credit points of junior materials science, 6 credit points of engineering design, Chemistry, biology, materials engineering, and engineering design at least at the Junior level.
N AMME5961 OR AMME9961 OR MECH4961 OR BMET4961
Semester 2
BMET9971
Tissue Engineering
6    A AMME9901 or BMET9901 or [6 credit points of 1000-level biology and 6 credit points of 1000-level chemistry]
P (AMME5921 or BMET5921 OR BMET9921)
N AMME5971 OR AMME9971 OR AMME4971 OR BMET4971
Semester 1
BMET9981
Applied Biomedical Engineering
6    A AMME9301 AND AMME9302 AND AMME9500 AND MECH9361
N AMME4981 or BMET4981 OR AMME5981 OR AMME9981
Semester 1
BMET9990
Biomedical Product Development
6    A 1000 level chemistry, 2000 level biology, and specific knowledge of cell biology at least at the1000 level, and preferably at the 2000 level.
N AMME4990 OR BMET4990 OR AMME5990 OR AMME9990
Semester 1
Exchange units may be taken as Specialist units with the approval of the Program Director.

Research units

BMET5020
Capstone Project A
6    P 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study).
N BMET5222 or BMET5223 or BMET 5010 or AMME5020 or AMME5020 or AMME5021 or AMME5022 or AMME5222 or AMME5223 or AMME5010
Semester 1
Semester 2
BMET5021
Capstone Project B
6    P 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study).
N BMET5022 or BMET5222 or BMET5223 or BMET5010 or AMME5020 or AMME5020 or AMME5021 or AMME5022 or AMME5222 or AMME5223 or AMME5010
Semester 1
Semester 2
BMET5022
Capstone Project B Extended
12    P [24 credit points in the Master of Engineering and WAM >=70, or 96 credit points in the Master of Professional Engineering and WAM >=70 or 48cp from MPE(Accel) program and WAM >=70]
N BMET5021 or BMET5222 or BMET5223 or AMME5020 or AMME5020 or AMME5021 or AMME5022 or AMME5222 or AMME5223 or AMME5010

Note: Department permission required for enrolment

Semester 1
Semester 2
BMET5222
Dissertation A
12    N BMET5020 or BMET5021 or BMET5022 or AMME5020 or AMME5020 or AMME5021 or AMME5022 or AMME5222 or AMME5223 or AMME5010

Note: Department permission required for enrolment
In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
Semester 1
Semester 2
BMET5223
Dissertation B
12    N BMET5020 or BMET5021 or BMET5022 or AMME5020 or AMME5020 or AMME5021 or AMME5022 or AMME5222 or AMME5223 or AMME5010

Note: Department permission required for enrolment
In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
Semester 1
Semester 2
With permission from the Program Director students progressing with distinction (75%) average or higher results may replace BMET5020, BMET5021 and 12 credit points of electives with BMET5222 & BMET5223, Dissertation A & B.
A candidate who has been granted RVL and who is eligible to undertake the extended capstone project or dissertation may be granted exemption of up to 12 credit points of specialist units.

Elective units

Specialist units may also be taken as Elective units. Other Postgraduate units in the Faculty may be taken as Elective units with the approval of the Program Director.
AERO9301
Applied Finite Element Analysis
6    A BE in area of Aerospace Engineering or related Engineering field.
P AERO9360 or AERO8360 or MECH9361 or MECH8361
Semester 1
AMME5202
Computational Fluid Dynamics
6    A Partial differential equations; Finite difference methods; Taylor series; Basic fluid mechanics including pressure, velocity, boundary layers, separated and recirculating flows. Basic computer programming skills.
Semester 1
AMME5271
Computational Nanotechnology
6    A Understanding of basic principles of Newtonian mechanics, physics and chemistry, fluid mechanics and solid mechanics.

Note: Department permission required for enrolment

Semester 2
AMME5310
Engineering Tribology
6    A (AMME2302 OR AMME9302) AND (AMME2301 OR AMME9301) AND (MECH3261 OR MECH9261 or MECH8261)

Note: Department permission required for enrolment

Semester 1
AMME5520
Advanced Control and Optimisation
6    A Strong understanding of feedback control systems, specifically in the area of system modelling and control design in the frequency domain.
P AMME3500 OR AMME9501 or AMME8501
Semester 1
AMME5902
Computer Aided Manufacturing
6   
Note: Department permission required for enrolment

Semester 2
AMME5912
Crash Analysis and Design
6    A Computer Aided Drafting, Basic FEA principles and Solid Mechanics

Note: Department permission required for enrolment

Semester 1
CHNG5601
Membrane Science
6      Semester 1
CHNG5603
Advanced Process Modelling and Simulation
6    A It is assumed that students have a general knowledge of: (MATH1001 OR MATH1021) AND (MATH1003 OR MATH1023) AND (CHNG2802 OR MATH2XXX)


This course is for Master degree students and also is offered as an elective course for fourth year students. Some lectures my be given by a guest lecturer.
Semester 1
CHNG5605
Bio-Products: Laboratory to Marketplace
6   

This course is for Master degree students and also is offered as an elective course for fourth year students.
Semester 2
MECH5304
Materials Failure
6    A Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics
P (MECH9361 OR MECH3361 or MECH8361) AND (MECH9362 or MECH8362 OR MECH3362)
Semester 2
MECH5305
Smart Materials
6    A Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics
P (AMME9301 OR AMME2301) AND (AMME9302 OR AMME2302 OR AMME1362)
Semester 2
MECH5310
Advanced Engineering Materials
6    P MECH3362 OR MECH9362 or MECH8362
N MECH4310
Semester 1
MECH5311
Microscopy and Microanalysis of Materials
6    A AMME1362 or AMME9302 or CIVL2110.
Semester 1
MECH5416
Advanced Design and Analysis
6    A ENGG1802 or AMME1802 - Eng Mechanics; balance of forces and moments; AMME2301 - Mechanics of Solids; 2 and 3 dimensional stress and strain; AMME2500 - Engineering Dynamics - dynamic forces and moments; MECH2400 - Mechanical Design 1; approach to design problems and report writing; and preparation of engineering drawing; MECH3460 - Mechanical design 2; means of applying fatigue analysis to a wide range of machine components.
P (AMME2301 OR AMME9301) AND (AMME2500 OR AMME9500) AND (MECH2400 OR MECH9400)
N MECH4460
Semester 1
MECH5720
Sensors and Signals
6    A Strong MATLAB skills
P MTRX3700
N MECH4720
Semester 2
MTRX5700
Experimental Robotics
6    A Knowledge of statics and dynamics, rotation matrices, programming and some electronic and mechanical design experience is assumed.
P (AMME3500 OR AMME9501 or AMME8501) AND MTRX3700
Semester 1

For more information on degree program requirements visit CUSP (https://cusp.sydney.edu.au).