University of Sydney Handbooks - 2020 Archive

Download full 2020 archivePage archived at: Tue, 27 Oct 2020

AMME

AMME – AMME unit of study descriptions

AMME1362 Materials 1

Credit points: 6 Teacher/Coordinator: Prof Xiaozhou Liao Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: CIVL2110 or AMME2302 Assumed knowledge: HSC Mathematics Extension 1 Assessment: Through semester assessment (51%) and Final Exam (49%) Mode of delivery: Normal (lecture/lab/tutorial) day
AMME1362 is an introductory course in engineering materials. The unit aims to develop students' understanding of the structures, mechanical properties and manufacture of a range of engineering materials as well as how the mechanical properties relate to microstructure and forming and treatment methods. The unit has no prerequisite subject and is therefore intended for those with little or no previous background in engineering materials. However the unit does require students to take a significant degree of independent responsibility for developing their own background knowledge of materials and their properties. The electrical, magnetic, thermal and optical properties of materials are a critical need-to-know area where students are expected to do most of their learning by independent study.
AMME1802 Engineering Mechanics

Credit points: 6 Teacher/Coordinator: Dr Ahmad Jabbarzadeh Khoei Session: Semester 2 Classes: Lectures, Tutorials Prohibitions: CIVL1802 or ENGG1802 Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
The unit aims to provide students with an understanding of and competence in solving statics and introductory dynamics problems in engineering. Tutorial sessions will help students to improve their group work and problem solving skills, and gain competency in extracting a simplified version of a problem from a complex situation. Emphasis is placed on the ability to work in 3D as well as 2D, including the 2D and 3D visualisation of structures and structural components, and the vectorial 2D and 3D representations of spatial points, forces and moments. Introduction to kinematics and dynamics topics includes position, velocity and acceleration of a point; relative motion, force and acceleration, momentum, collisions and energy methods.
AMME2000 Engineering Analysis

Credit points: 6 Teacher/Coordinator: Dr Ben Thornber Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: (MATH1001 OR MATH1021 OR MATH1901 OR MATH1921 OR MATH1906 OR MATH1931) AND (MATH1002 OR MATH1902) AND (MATH1003 OR MATH1023 OR MATH1903 OR MATH1923 OR MATH1907 OR MATH1933) AND (ENGG1801 OR INFO1103 OR INFO1903 OR INFO1110 OR INFO1910 OR DATA1002 OR DATA1902) Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This course is designed to provide students with the necessary tools for mathematically modelling and solving problems in engineering. Engineering methods will be considered for a range of canonical problems including; Conduction heat transfer in one and two dimensions, vibration, stress and deflection analysis, convection and stability problems. The focus will be on real problems, deriving analytical solutions via separation of variables; Fourier series and Fourier transforms; Laplace transforms; scaling and solving numerically using finite differences, finite element and finite volume approaches.
AMME2200 Introductory Thermofluids

Credit points: 6 Teacher/Coordinator: Prof John Kent Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: AMME2261 OR AMME2262 Assumed knowledge: (MATH1001 OR MATH1021 OR MATH1901 OR MATH1921 OR MATH1906 OR MATH1931) AND (MATH1002 OR MATH1902) AND (MATH1003 OR MATH1023 OR MATH1903 OR MATH1923 OR MATH1907 OR MATH1933). Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra. Assessment: Through semester assessment (30%) and Final Exam (70%) Mode of delivery: Normal (lecture/lab/tutorial) day
This Unit of Study is a shorter version of content in AMME2261 + AMME2262 and suits Biomedical (Mechanical Major) and Mechatronics students.
Students will get a practical, introductory course in Fluid Mechanics, Heat Transfer and Thermodynamics. Basic principles and applications in these areas are covered. The emphasis is on learning how to tackle the variety of problems which engineers encounter in these fields.
Fluid Mechanics
Properties: viscosity, surface tension, cavitation, capillarity. Hydrostatics: manometers, forces and moments on submerged surfaces, centre of pressure, buoyancy, vessel stability. Flow: Streamlines, turbulence, continuity, Bernoulli, venturi meter, pitot tube, head, loss coefficients, pumps, turbines, power, efficiency. Fluid momentum, drag, thrust, propulsive efficiency, wind turbines, turbomachinery, torque, power, head, Francis, Pelton, Kaplan turbines. Dimensional analysis, similarity, scale modelling, Reynolds No. , pipe flow, pressure drop, Moody chart.
Heat Transfer
Conduction: thermal circuits, plane, cylindrical, conduction equation, fins. Heat Exchangers: LMTD and NTU methods. Unsteady Conduction: lumped capacity, Bi, Fo, Heissler charts. Convection (forced), analytical Nu, Pr correlations. Convection (natural) Ra, Gr. Radiation spectrum, blackbody, emissivity, absorptivity, transmissivity, Stefan-Boltzmann, Kirchhoff Laws, selective surfaces, environmental radiation.
Thermodynamics:
1st Law of Thermodynamics, Properties, State postulate. Ideal gases, 2-phase properties, steam quality. Turbines, compressors. thermal efficiency and COP for refrigerators. 2nd Law of Thermodynamics, Kelvin-Planck, Clausius statements. Carnot engine. Entropy; increase of entropy principle, entropy and irreversibility. Isentropic processes, T-s diagrams, isentropic efficiency. Some power and refrigeration cycle analysis, characteristics of main power cycles. Psychrometry, air-conditioning, thermal comfort basics.
AMME2261 Fluid Mechanics 1

Credit points: 6 Teacher/Coordinator: Dr Agisilaos Kourmatzis Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prerequisites: (MATH1001 OR MATH1021 OR MATH1901 OR MATH1921 OR MATH1906 OR MATH1931) AND (MATH1002 OR MATH1902) AND (MATH1003 OR MATH1023 OR MATH1903 OR MATH1923 OR MATH1907 OR MATH1933) Prohibitions: AMME2200 Assumed knowledge: Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit covers the fundamentals of fluid statics and fluid dynamics. At the end of this unit students will have: an understanding of the basic equations governing the statics and dynamics of fluids; the ability to analyze and determine the forces applied by a static fluid; the ability to analyse fluids in motion. The course will cover both inviscid and viscous fluid flow. The course will introduce the relevant parameters for fluid flow in internal engineering systems such as pipes and pumps and external systems such as flow over wings and airfoils. Course content will cover the basic concepts such as viscosity, density, continuum, pressure, force, buoyancy and acceleration; and more detailed methods including continuity, conservation of momentum, streamlines and potential flow theory, Bernoulli equation, Euler equation, Navier-Stokes equation. Experiments will introduce flow measuring devices and flow observation.
AMME2262 Thermal Engineering 1

Credit points: 6 Teacher/Coordinator: Dr Matthew Dunn Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prerequisites: (MATH1001 OR MATH1021 OR MATH1901 OR MATH1921 OR MATH1906 OR MATH1931) AND (MATH1002 OR MATH1902) AND (MATH1003 OR MATH1023 OR MATH1903 OR MATH1923 OR MATH1907 OR MATH1933) Prohibitions: AMME2200 Assumed knowledge: Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to teach the basic laws of thermodynamics and heat transfer. At the end of this unit students will have: an understanding of the basic laws of thermodynamics and heat transfer; The ability to analyze the thermodynamics of a simple open or closed engineering system. The basic knowledge to analyse and design 1D thermal circuits. Course content will include concepts of heat and work, properties of substances, first law of thermodynamics, control mass and control volume analysis, thermal efficiency, entropy, second law of thermodynamics, reversible and irreversible processes, isentropic efficiency, power and refrigeration cycles, heat transfer by conduction, convection and radiation, 1D thermal circuits and transient heat transfer.
AMME2301 Mechanics of Solids

Credit points: 6 Teacher/Coordinator: Dr Abdulmalik Altaee Session: Semester 2 Classes: Lectures, Tutorials Prerequisites: (AMME1802 OR ENGG1802) AND (MATH1001 OR MATH1021 OR MATH1901 OR MATH1921 OR MATH1906 OR MATH1931) AND (MATH1002 OR MATH1902) AND (MATH1003 OR MATH1023 OR MATH1903 OR MATH1923 OR MATH1907 OR MATH1933) Prohibitions: CIVL2201 Assessment: Through semester assessment (35%) and Final Exam (65%) Mode of delivery: Normal (lecture/lab/tutorial) day
Equilibrium of deformable structures; basic concept of deformation compatibility; stress and strain in bars, beams and their structures subjected to tension, compression, bending, torsion and combined loading; statically determinate and indeterminate structures; energy methods for bar and beam structures; simple buckling; simple vibration; deformation of simple frames and cell box beams; simple two-dimensional stress and Morh's circle; problem-based applications in aerospace, mechanical and biomedical engineering.
AMME2500 Engineering Dynamics

Credit points: 6 Teacher/Coordinator: Dr Mitchell Bryson Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prerequisites: (MATH1001 OR MATH1021 OR MATH1901 OR MATH1921 OR MATH1906 OR MATH1931) AND (MATH1002 OR MATH1902) AND (MATH1003 OR MATH1023 OR MATH1903 OR MATH1923 OR MATH1907 OR MATH1933) AND (AMME1802 OR ENGG1802) Assumed knowledge: Familiarity with the MATLAB programming environment Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study will focus on the principles governing the state of motion or rest of bodies under the influence of applied force and torque, according to classical mechanics. The course aims to teach students the fundamental principles of the kinematics and kinetics of systems of particles, rigid bodies, planar mechanisms and three-dimensional mechanisms, covering topics including kinematics in various coordinate systems, Newton's laws of motion, work and energy principles, impulse and momentum (linear and angular), gyroscopic motion and vibration. Students will develop skills in analysing and modelling dynamical systems, using both analytical methods and computer-based solutions using MATLAB. Students will develop skills in approximating the dynamic behaviour of real systems in engineering applications and an appreciation and understanding of the effect of approximations in the development and design of systems in real-world engineering tasks.
AMME2700 Instrumentation

Credit points: 6 Teacher/Coordinator: Dr Xiaofeng Wu Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prerequisites: AERO1560 OR MECH1560 OR MTRX1701 OR ENGG1800 Assumed knowledge: Programming skills, 1st year maths skills, familiarity with fundamental Engineering concepts. Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to develop in students an understanding of the engineering measurements and instrumentation systems. The students will acquire an ability to make accurate and meaningful measurements. It will cover the general areas of electrical circuits and mechanical/electronic instrumentation for strain, force, pressure, moment, torque, displacement, velocity, acceleration, temperature and so on.
AMME3060 Engineering Methods

Credit points: 6 Teacher/Coordinator: Dr Nicholas Williamson Session: Semester 2 Classes: Lectures, Tutorials Prerequisites: AMME2000 OR MATH2067 OR (MATH2061 AND MATH2065) OR MATH2021 Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This course will address the use of state of the art engineering software packages for the solution of advanced problems in engineering. We will cover the solution of partial differential equations in heat transfer; fluids, both inviscid and viscous, and solids, including plates, shells and membranes. While some analytical methods will be considered, the primary focus of the course will be on the use of numerical solution methods, including finite difference, finite volume and spectral methods. Commercial engineering packages will be introduced with particular attention given to the development of standards for the accuracy and representation of data.
AMME3110 Project A

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Assessment: Project (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Supervised project on a relevant engineering discipline.
AMME3500 System Dynamics and Control

Credit points: 6 Teacher/Coordinator: Dr Guodong Shi Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: AMME2500 Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to allow students to develop an understanding of methods for modeling and controlling linear, time-invariant systems. Techniques examined will include the use of differential equations and frequency domain approaches to modeling of systems. This will allow students to examine the response of a system to changing inputs and to examine the influence of external stimuli such as disturbances on system behaviour. Students will also gain an understanding of how the responses of these mechanical systems can be altered to meet desired specifications and why this is important in many engineering problem domains.
The study of control systems engineering is of fundamental importance to most engineering disciplines, including Mechanical, Mechatronic, Biomedical, and Aerospace Engineering. Control systems are found in a broad range of applications within these disciplines, from aircraft and spacecraft to robots, automobiles, manufacturing processes, and medical diagnostic systems. The concepts taught in this course introduce students to the mathematical foundations behind the modelling and control of linear, time-invariant dynamic systems. In particular, topics addressed in this course will include:
1. Techniques for modelling mechanical systems and understanding their response to control inputs and disturbances. This will include the derivation of differential equations and use of frequency domain (Laplace transform) methods for their solution and analysis.
2. Representation of systems in a feedback control system as well as techniques for determining what desired system performance specifications are achievable, practical and important when the system is under control
3. Techniques including Root Locus, Bode Plots, and State Space for analysis and design of feedback control systems.
4. Case studies inspired by real-world problems in control engineering.
AMME4010 Major Industrial Project

Credit points: 24 Teacher/Coordinator: Dr Ahmad Jabbarzadeh Khoei Session: Semester 1,Semester 2 Classes: Practical Experience Prerequisites: 36 credits of at least 3rd year units of study with 65% average Prohibitions: AMME4111 OR AMME4112 OR AMME4121 OR AMME4122 OR ENGG4000 OR MECH4601 or BMET4111 or BMET4112 OR BMET4010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: For students whose degree includes ENGG4000, AMME4010 counts in place of this unit. Students whose degree includes the Professional Engagement Program must enrol in all PEP units. AMME4010 will count toward the Engineering Work requirement of ENGP3000.
Students spend 6 months at an industrial placement working on a major engineering project relevant to their engineering stream. This is a 24 credit point unit, which may be undertaken as an alternative to AMME4111/4112 Thesis A & B, and two recommended electives.
This unit of study gives students experience in carrying out a major project within an industrial environment, and in preparing and presenting detailed technical reports (both oral and written) on their work. The project is carried out under joint University/industry supervision, with the student essentially being engaged fulltime on the project at the industrial site.
AMME4110 Project B

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Project Work - own time Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Supervised project on a relevant engineering discipline.
AMME4111 Thesis A

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Research Prerequisites: 36 cp of any 3000- or higher level Engineering units of study Prohibitions: AMME4010 or AMME4122 or AMME4121 or BMET4111 or BMET4112 OR BMET4010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Prospective students in Thesis A are expected to have consulted with supervisors and selected a topic of interest at the end of third year, guided by the advertised list of suggested thesis topics and supervisors. Availability of topics is limited and students should undertake to speak with prospective supervisors as soon as possible. Students who are unable to secure a supervisor and topic will be allocated a supervisor by the unit coordinator. Alternatively, students may do a thesis with a supervisor in industry or in another university department. In this case, the student must also find a second supervisor within the School of AMME.
The ability to plan, systematically conduct and report on a major project, involving both research and design, is an important skill for professional engineers. The final year thesis units (Thesis A and Thesis B) aim to provide students with the opportunity to carry out a defined piece of independent research and design that fosters the development of engineering skills. These skills include: the capacity to define a problem; carry out systematic research in exploring how it relates to existing knowledge; identifying the tools needed to address the problem; designing a solution, product or prototype; analysing the results obtained; and presenting the outcomes in a report that is clear, coherent and logically structured.
The thesis is undertaken across two semesters of enrolment. Taken together, Thesis A covers initial research into the background of the problem being considered (formulated as a literature review), development of a detailed proposal incorporating project objectives, planning, and risk assessment, preliminary design, modelling and/or experimental work, followed by the detailed work in designing a solution, performing experiments, evaluating outcomes, analysing results, and writing up and presenting the outcomes. The final grade is based on the work done in both Thesis A and B, and will be awarded upon successful completion of Thesis B.
While recognising that some projects can be interdisciplinary in nature, it is the normal expectation that the students would do the project in their chosen area of specialisation. For student who are completing a Major within their BE degree, the thesis topic must be within the area of the Major. The theses to be undertaken by students will very often be related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation and analysis, feasibility studies or the design, construction and testing of equipment. All however will require students to undertake research and design relevant to the topic of their thesis. The direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself.
The thesis must be the student's individual work although it may be conducted as a component of a wider group project. Students undertaking research on this basis will need to take care in ensuring the quality of their own research and design work and their individual final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive they have been in assessing their work and that of others. Students will also be required to present the results of their thesis to their peers and supervisors as part of a seminar program. Whilst thesis topics will be constrained by the available time and resources, the aim is to contribute to the creation of new engineering knowledge, techniques and/or solutions. Students should explore topics that arouse intellectual curiosity and represent an appropriate range and diversity of technical and conceptual research and design challenges.
AMME4112 Thesis B

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Research Prerequisites: 36 cp of any 3000- or higher level Engineering units of study Prohibitions: AMME4121 or AMME4010 or AMME4122 or BMET4111 or BMET4112 OR BMET4010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
The ability to plan, systematically conduct and report on a major project, involving both research and design, is an important skill for professional engineers. The final year thesis units (Thesis A and Thesis B) aim to provide students with the opportunity to carry out a defined piece of independent research and design that fosters the development of engineering skills. These skills include: the capacity to define a problem; carry out systematic research in exploring how it relates to existing knowledge; identifying the tools needed to address the problem; designing a solution, product or prototype; analysing the results obtained; and presenting the outcomes in a report that is clear, coherent and logically structured.
The thesis is undertaken across two semesters of enrolment. Taken together, Thesis A covers initial research into the background of the problem being considered (formulated as a literature review), development of a detailed proposal incorporating project objectives, planning, and risk assessment, preliminary design, modelling and/or experimental work, followed by the detailed work in designing a solution, performing experiments, evaluating outcomes, analysing results, and writing up and presenting the outcomes. The final grade is based on the work done in both Thesis A and B, and will be awarded upon successful completion of Thesis B.
While recognising that some projects can be interdisciplinary in nature, it is the normal expectation that the students would do the project in their chosen area of specialisation. For student who are completing a Major within their BE degree, the thesis topic must be within the area of the Major. The theses to be undertaken by students will very often be related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation and analysis, feasibility studies or the design, construction and testing of equipment. All however will require students to undertake research and design relevant to the topic of their thesis. The direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself.
The thesis must be the student's individual work although it may be conducted as a component of a wider group project. Students undertaking research on this basis will need to take care in ensuring the quality of their own research and design work and their individual final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive they have been in assessing their work and that of others. Students will also be required to present the results of their thesis to their peers and supervisors as part of a seminar program. Whilst thesis topics will be constrained by the available time and resources, the aim is to contribute to the creation of new engineering knowledge, techniques and/or solutions. Students should explore topics that arouse intellectual curiosity and represent an appropriate range and diversity of technical and conceptual research and design challenges.
AMME4121 Engineering Project A

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Project Work - own time Prerequisites: 36 cp of any 3000- or higher level units of study Prohibitions: AMME4111 or AMME4010 or AMME4112 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: Prospective students in Engineering Project A are expected to have consulted with supervisors and selected a project topic of interest at the end of third year, guided by the advertised list of suggested project topics and supervisors. Availability of topics is limited and students should undertake to speak with prospective supervisors as soon as possible. Students who are unable to secure a supervisor and topic will be allocated a supervisor by the unit coordinator. Alternatively, students may undertake a project with a supervisor in industry or in another university department. In this case, the student must also find a second supervisor within the School of AMME.
To complete the research requirement for their engineering degree, students now have a choice of either completing Thesis A/B (AMME4111/AMME4112) or Project A/B (AMME4121/AMME4122). Project A/B is intended to be more practical in orientation while Thesis A/B demands extensive literature review and critical analysis of outcomes. Thesis is a program for individuals whereas Projects can be done by groups or by an individual. Engineering Project A/B is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Engineering Project A covers first steps of project work, starting with development of project proposal. Project B covers the second of stage writing up and presenting the project results.
The fourth year engineering project aims to provide students with the opportunity to carry out a defined piece of independent design work in a setting and in a manner that fosters the development of engineering design skills. These skills include the capacity to define a engineering design problem, showing how it relates to prior art, identifying appropriate tools and methods, carrying out a design in a systematic way and presenting outcomes in a report that is clear, coherent and logically structured.
AMME4122 Engineering Project B

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Project Work - own time Prerequisites: AMME4121 and 30 credit points of 3000- or higher level units of study Prohibitions: AMME4010 or AMME4111 or AMME4112 Assumed knowledge: Students will be expected to draw on their project plan, proposed outcomes and background research developed during Project A to allow them to complete the requirements for this unit of study. Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
To complete the research requirement for their engineering degree, students now have a choice of either completing Thesis A/B (AMME 4111/AMME4112) or Engineering Project A/B (AMME 4121/AMME4122). Engineering Project A/B is intended to be more practical in orientation while Thesis A/B demands extensive literature review and critical analysis of outcomes. Thesis is a program for individuals whereas Projects can be done by groups or by an individual. Engineering Project A/B is undertaken across two consecutive semesters of enrolment, in two successive Units of Study of 6 credits points each. Engineering Project A covers first steps of project work, starting with development of project proposal. Engineering Project B covers the second of stage writing up and presenting the project results.
The fourth year engineering project aims to provide students with the opportunity to carry out a defined piece of independent design work in a setting and in a manner that fosters the development of engineering design skills. These skills include the capacity to define a engineering design problem, showing how it relates to prior art, identifying appropriate tools and methods, carrying out a design in a systematic way and presenting outcomes in a report that is clear, coherent and logically structured.
AMME4710 Computer Vision and Image Processing

Credit points: 6 Teacher/Coordinator: Dr Mitchell Bryson Session: Semester 2 Classes: Lectures, Laboratories Prerequisites: MTRX3700 OR MECH4720 OR MECH5720 Assumed knowledge: The unit assumes that students have strong skills in MATLAB. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study introduces students to vision sensors, computer vision analysis and digital image processing. This course will cover the following areas: fundamental principles of vision sensors such as physics laws, radiometry, CMOS/CDD imager architectures, colour reconstruction; the design of physics-based models for vision such as reflectance models, photometric invariants, radiometric calibration. This course will also present algorithms for video/image analysis, transmission and scene interpretation. Topics such as image enhancement, restoration, stereo correspondence, pattern recognition, object segmentation and motion analysis will be covered.
AMME5010 Major Industrial Project

Credit points: 24 Teacher/Coordinator: Dr Ahmad Jabbarzadeh Khoei Session: Semester 1,Semester 2 Classes: Project Work in Industry Prohibitions: AMME5020 OR AMME5021 OR AMME5022 OR AMME5222 OR AMME5223 OR ENGG5217 OR BMET5020 OR BMET5021 OR BMET5022 OR BMET5222 OR BMET5223 OR BMET5010 Assumed knowledge: Students must have a credit (>65%) average in prior semester enrolment Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Students spend 6 months at an industrial placement working on a major engineering project relevant to their engineering stream. This is a 24 credit point unit, which may be undertaken as an alternative to ENGG5217 Practical Experience, AMME5020/5021 Capstone Project A and B and 12cp of specialist electives.
This unit of study gives students experience in carrying out a major project within an industrial environment, and in preparing and presenting detailed technical reports (both oral and written) on their work. The project is carried out under joint University/industry supervision, with the student essentially being engaged full-time on the project at the industrial site.
AMME5020 Capstone Project A

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Research Prerequisites: 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study). Prohibitions: AMME5222 OR AMME5223 OR AMME5010 OR BMET5020 OR BMET5021 OR BMET5022 OR BMET5222 OR BMET5223 OR BMET5010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to be considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
AMME5021 Capstone Project B

Credit points: 6 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Research Prerequisites: 96 credit points from the MPE degree program or 48 cp from the MPE(Accel) program or 24 credit points from the ME degree program (including any credit for prior study) Prohibitions: AMME5022 OR AMME5222 OR AMME5223 OR AMME5010 OR BMET5020 OR BMET5021 OR BMET5022 OR BMET5222 OR BMET5223 OR BMET5010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
AMME5022 Capstone Project B Extended

Credit points: 12 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Classes: Research Prerequisites: 24 credit points in the Master of Engineering and WAM >=70 or 96 credit points in the Master of Professional Engineering and WAM >=70 or 48cp from MPE(Accel) program and WAM >=70 Prohibitions: AMME5021 OR AMME5222 OR AMME5223 OR BMET5020 OR BMET5021 OR BMET5022 OR BMET5222 OR BMET5223 OR BMET5010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
Students are required to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor, however the student is expected to make a significant contribution to the direction of the project, and the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
AMME5060 Advanced Computational Engineering

Credit points: 6 Teacher/Coordinator: Dr Nicholas Williamson Session: Semester 2 Classes: lectures, tutorials Prerequisites: UG students are required to complete AMME3060 before enrolling in this unit. Assumed knowledge: Linear algebra, calculus and partial differential equations, Taylor series, the finite difference and finite element methods, numerical stability, accuracy, direct and iterative linear solvers and be able to write Matlab Scripts to solve problems using these methods. Assessment: through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit will cover advanced numerical and computational methods within an engineering context. The context will include parallel coding using MPI, computational architecture, advanced numerical methods including spectral methods, compact finite difference schemes, numerical dispersion and diffusion and efficient linear solvers. Students will develop to skills and confidence to write their own computational software. Applications in fluid and solid mechanics will be covered.
AMME5101 Energy and the Environment

Credit points: 6 Teacher/Coordinator: Dr Matthew Cleary Session: Semester 1 Classes: Lectures, Tutorials Prerequisites: MECH3260 OR MECH9260 or MECH8260 OR AERO3261 OR AERO9261 or AERO8261 Assumed knowledge: Students are expected to be familiar with the basic laws of thermodynamics, fluid mechanics and heat transfer Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is suitable for any engineering discipline student who is interested in developing an understanding of analysis and design in energy, power generation, environment and relevant economic issues. The aim is to acquaint students with the methods engineers use to design and evaluate the processes used for the conversion of energy into useful work. This course concentrates on thermal energy conversion. It also assesses and deals with the environmental consequences of energy conversion. At the end of this unit students will be able to critically analyse technical, economic and societal impacts of energy conversion systems.
A series of topics, each containing a series of lectures, will be covered in relation to energy. The course content will include: The Status of Energy Today; Energy for Electricity Generation; Nuclear Energy; Energy for Transportation; Future Energy Usage.
AMME5202 Computational Fluid Dynamics

Credit points: 6 Teacher/Coordinator: Prof Steven Armfield Session: Semester 1 Classes: Laboratories, Lectures, Tutorials Assumed knowledge: Partial differential equations; Finite difference methods; Taylor series; Basic fluid mechanics including pressure, velocity, boundary layers, separated and recirculating flows. Basic computer programming skills. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Objectives: To provide students with the necessary skills to use commercial Computational Fluid Dynamics packages and to carry out research in the area of Computational Fluid Dynamics. Expected outcomes: Students will have a good understanding of the basic theory of Computational Fluid Dynamics, including discretisation, accuracy and stability. They will be capable of writing a simple solver and using a sophisticated commercial CFD package.
Syllabus summary: A course of lectures, tutorials and laboratories designed to provide the student with the necessary tools for using a sophisticated commercial CFD package. A set of laboratory tasks will take the student through a series of increasingly complex flow simulations, requiring an understanding of the basic theory of computational fluid dynamics (CFD). The laboratory tasks will be complemented by a series of lectures in which the basic theory is covered, including: governing equations; finite difference methods, accuracy and stability for the advection/diffusion equation; direct and iterative solution techniques; solution of the full Navier-Stokes equations; turbulent flow; Cartesian tensors; turbulence models.
AMME5222 Dissertation A

Credit points: 12 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Prohibitions: AMME5020 OR AMME5021 OR AMME5022 OR BMET5020 OR BMET5021 OR BMET5022 OR BMET5222 OR BMET5223 OR BMET5010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis. The final research project should be completed and reported at a level which meets AQF level 9 outcomes and has original components as would be expected in MPhil.
AMME5223 Dissertation B

Credit points: 12 Teacher/Coordinator: Dr Rodney Fiford Session: Semester 1,Semester 2 Prohibitions: AMME5020 OR AMME5021 OR AMME5022 OR BMET5020 OR BMET5021 OR BMET5022 OR BMET5222 OR BMET5223 OR BMET5010 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis. The final research project should be completed and reported at a level which meets AQF level 9 outcomes and has original components as would be expected in MPhil.
AMME5271 Computational Nanotechnology

Credit points: 6 Teacher/Coordinator: Dr Ahmad Jabbarzadeh Khoei Session: Semester 2 Classes: Lectures, Tutorials Assumed knowledge: Understanding of basic principles of Newtonian mechanics, physics and chemistry, fluid mechanics and solid mechanics. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This course introduces atomistic computational techniques used in modern engineering to understand phenomena and predict material properties, behaviour, structure and interactions at nano-scale. The advancement of nanotechnology and manipulation of matter at the molecular level have provided ways for developing new materials with desired properties. The miniaturisation at the nanometre scale requires an understanding of material behaviour which could be much different from that of the bulk. Computational nanotechnology plays a growingly important role in understanding mechanical properties at such a small scale. The aim is to demonstrate how atomistic level simulations can be used to predict the properties of matter under various conditions of load, deformation and flow. The course covers areas mainly related to fluid as well as solid properties, whereas, the methodologies learned can be applied to diverse areas in nanotechnology such as, liquid-solid interfaces, surface engineering, nanorheology, nanotribology and biological systems. This is a course with a modern perspective for engineers who wish to keep abreast with advanced computational tools for material characterisation at the atomic scale.
AMME5292 Advanced Fluid Dynamics

Credit points: 6 Teacher/Coordinator: Dr Agisilaos Kourmatzis Session: Semester 1 Classes: lectures, tutorials Assumed knowledge: MECH3261 OR MECH9261 OR CIVL3612 OR CIVL9612 OR AERO3260 OR AERO9260 Assessment: through semester assessment (65%), final exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to cover advanced concepts in fluid dynamics, focusing particularly on turbulent flows, optical and laser based experimentation, and applied fluid dynamics in the context of engineering design. Specific topics to be covered will be: instability and turbulence, Reynolds decomposition, the Kolmogorov hypotheses, laser-based fluid flow measurement, and applied concepts such as multiphase flows, environmental flows, and biomedical flows. The project component of the unit will give students the opportunity to work on an advanced topical research or practical problem in fluid dynamics.
AMME5310 Engineering Tribology

Credit points: 6 Teacher/Coordinator: Dr Ahmad Jabbarzadeh Khoei Session: Semester 1 Classes: Lectures, Laboratories, Tutorials, Seminars Assumed knowledge: (AMME2302 OR AMME9302) AND (AMME2301 OR AMME9301) AND (MECH3261 OR MECH9261 or MECH8261) Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The aim is to teach students in the undergraduate and postgraduate levels basic concepts about friction, lubrication and wear applicable to design and operation of mechanical systems used in engineering, industrial, and modern applications. Examples of these systems are lubrication of internal combustion engines, gearboxes, artificial hip/knee joints, and micro/nano electromechanical systems.
AMME5510 Vibration and Acoustics

Credit points: 6 Teacher/Coordinator: Dr Gareth Vio Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prerequisites: (AMME2301 OR AMME9301) AND (AMME2200 OR AMME2261 OR AMME9261) AND (AMME2500 OR AMME9500) Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study should prepare the student to be able to undertake vibration and acoustic measurement calculations for industry design situations.
The unit aims to introduce a number of new concepts required for analysis of vibrations and acoustics. The response of structure under different dynamic forces, including human and aerodynamic, will be investigated. A number of hands-on experiments will be performed to allow an understanding of the concepts and applicability.
The acoustics component will include: basic acoustics theory, sound generation and propagation, impedance, absorbing materials, industrial noise sources, isolation methods of noise control, enclosures, instrumentation and measurement, frequency analysis, noise regulations and computational acoustics.
AMME5520 Advanced Control and Optimisation

Credit points: 6 Teacher/Coordinator: Dr Ian Manchester Session: Semester 1 Classes: Lectures, Tutorials, Research Prerequisites: AMME3500 OR AMME9501 or AMME8501 Assumed knowledge: Strong understanding of feedback control systems, specifically in the area of system modelling and control design in the frequency domain. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces engineering design via optimisation, i. e. finding the "best possible" solution to a particular problem. For example, an autonomous vehicle must find the fastest route between two locations over a road network; a biomedical sensing device must compute the most accurate estimate of important physiological parameters from noise-corrupted measurements; a feedback control system must stabilise and control a multivariable dynamical system (such as an aircraft) in an optimal fashion. The student will learn how to formulate a design in terms of a "cost function", when it is possible to find the "best" design via minimization of this "cost", and how to do so. The course will introduce widely-used optimisation frameworks including linear and quadratic programming (LP and QP), dynamic programming (DP), path planning with Dijkstra's algorithm, A*, and probabilistic roadmaps (PRMs), state estimation via Kalman filters, and control via the linear quadratic regulator (LQR) and Model Predictive Control (MPC). There will be constant emphasis on connections to real-world engineering problems in control, robotics, aerospace, biomedical engineering, and manufacturing.
AMME5790 Introduction to Biomechatronics

Credit points: 6 Teacher/Coordinator: Dr Graham Brooker Session: Semester 2 Classes: Lectures, Laboratories, Project work - own time, Tutorials Prerequisites: (MECH3921 OR BMET3921) OR MTRX3700 OR (AMME5921 OR BMET5921 OR BMET9921) Prohibitions: AMME4790 Assumed knowledge: Knowledge in mechanical and electronic engineering; adequate maths and applied maths skills; background knowledge of physics, chemistry and biology; Some programming capability: MATLAB, C, C++, software tools used by engineers including CAD and EDA packages. Assessment: through semester assessment (65%) and final exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: AMME5790 is the last in a series of practical Mechatronic and Electrical courses taken over three years. It takes these engineering concepts, along with the associated mathematical, electronic and mechanical theory and applies this knowledge to a series of practical, albeit specialised biomechatronic applications that will be encountered by Mechatronic Engineers who enter this broad field on graduation.
Biomechatronics is the application of mechatronic engineering to human biology, and as such it forms an important subset of the overall biomedical engineering discipline. This course focusses on a number of areas of interest including auditory and optical prostheses, artificial hearts and active and passive prosthetic limbs and examines the biomechatronic systems (hardware and signal processing) that underpin their operation.
AMME5902 Computer Aided Manufacturing

Credit points: 6 Teacher/Coordinator: Paul Briozzo Session: Semester 2 Classes: Project Work - in class, Lectures, Tutorials, Laboratories, Seminar Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The aim of this course is to enhance the student's manufacturing engineering skills in the CAD/CAM area. The course focuses on CNC milling as a manufacturing automation process applied to a project. The management, planning and marketing of a typical engineering project are also discussed.
Through integrated project-based learning and hands-on-machine training, you will learn: How to successfully complete a CAD/CAM and CNC mill based project; Manufacturing management and system skills, such as product planning, manufacturing sequence, time and cost; The science in designing and selecting a manufacturing method; How to effectively present your ideas and outcomes using oral and report based methods.
It is expected that through your hard work in the semester, you will find: Enhanced learning by real-world problems; Improved comprehensive skill in manufacturing design.
AMME5912 Crash Analysis and Design

Credit points: 6 Teacher/Coordinator: Paul Briozzo Session: Semester 1 Classes: Lectures, Tutorials Assumed knowledge: Computer Aided Drafting, Basic FEA principles and Solid Mechanics Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The objective of the course is to give students skills in the area of highly non-linear finite element analysis. Major topics covered include CAD, Implicit / explicit codes, Wire frame geometry, Elemental Theory, Materials, Pre-processing using ETA-PreSys, Contact, LS-Dyna, using NCAC FEM models, Modeling fasteners and the interaction between solids and fluids. Material covered in lectures is reinforced through independent research, assignments, quizzes and a major capstone project. The capstone project involves the development of an approved crash scenario.