Physiology
PHYSIOLOGY
Advanced coursework and projects will be available in 2020 for students who complete this major.
Physiology major
A major in Physiology requires 48 credit points from this table including:
(i) 6 credit points of 1000-level core units
(ii) 6 credit points of 1000-level selective units
(iii) 12 credit points of 2000-level core units according to the following rules:
(a) 6 credit points of Physiology core unit and 6 credit points of selective MEDS coded units or
(b) 12 credit points of PHSI coded core units
(iv) 12 credit points of 3000-level breadth units
(v) 12 credit points of 3000-level specialisation units
Physiology minor
A minor in Physiology requires 36 credit points from this table including:
(i) 6 credit points of 1000-level core units
(ii) 6 credit points of 1000-level selective units
(iii) 12 credit points of 2000-level core units according to the following rules:
(a) 6 credit points of Physiology core unit and 6 credit points of selective MEDS coded units or
(b) 12 credit points of PHSI coded core units
(iv) 6 credit points of 3000-level breadth units
(v) 6 credit points of 3000-level specialisation units
Units of study
The units of study are listed below.
1000-level units of study
Core
CHEM1011 Fundamentals of Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February). Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1111 Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1,Semester 2,Summer Main Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures and 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3hr practical per week for 12 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, presentations, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
Selective
BIOL1007 From Molecules to Ecosystems
Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2,Summer Main Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Pauline Ross Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)
Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), project report which includes written report and presentation (50%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be either a synthetic biology project investigating genetically engineered organisms or organismal/ecosystems biology. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
BIOL1008 Human Biology
Credit points: 6 Teacher/Coordinator: Dr Osu Lilje Session: Semester 1,Summer Main Classes: Lectures; six 3-hour practical sessions; six workshops and tutorials; students encouraged to spend 1-2 hours per week accessing online resources Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or MEDS1001 or MEDS1901 or BIOL1908 or BIOL1998 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Written and oral presentation, quiz, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences.
Textbooks
TBA
BIOL1908 Human Biology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Osu Lilje Session: Semester 1 Classes: Lectures; six 3-hour practical sessions; six workshops and tutorials.; in addition, students are strongly encouraged to spend 1-2 hours per week accessing on-line resources Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or MEDS1001 or MEDS1901 or BIOL1008 or BIOL1998 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Written and oral presentation, quiz, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences. The advanced unit has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest lecturers from medical science industries. The nature of these components may vary from year to year.
Textbooks
TBA
BIOL1998 Human Biology (Special Studies Program)
Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures; 12 3-hour practical sessions; students are strongly encouraged to spend 1-2 hours on online resources Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1991 or BIOL1996 or MEDS1001 or MEDS1901 or BIOL1008 or BIOL1908 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: written and oral presentation, quiz, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences.
Textbooks
TBA
MEDS1001 Human Biology
Credit points: 6 Teacher/Coordinator: Prof Philip Poronnik Session: Semester 1 Classes: this unit of study will involve between 5-6 hours of face-to-face activities run on the camperdown campus, these contact hours will comprise lectures; six 3-hour practical sessions; six workshops and tutorials Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1008 or BIOL1908 or BIOL1998 or MEDS1901 Assessment: Written and oral communication, quiz, practical and workshop reports, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the medical sciences suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology and medical sciences. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in the medical sciences.
Textbooks
TBA
MEDS1901 Human Biology (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Philip Poronnik Session: Semester 1 Classes: this unit of study will involve between 5-6 hours of face-to-face activities run on the camperdown campus Prerequisites: 85 or above in HSC Biology or equivalent Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1008 or BIOL1908 or BIOL1998 or MEDS1001 Assessment: Written and oral presentation, quiz, assignment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences. The advanced unit has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest lecturers from medical science industries. The nature of these components may vary from year to year.
Textbooks
TBA
MEDS coded units of study are only available to students in the Medical Science stream.
2000-level units of study
Core Physiology unit
MEDS2001 to be developed for offering in 2019 (MEDS coded units of study are only available to students in the Medical Science stream).
Selective MEDS coded units
MEDS2002, MEDS2003, MEDS2004 and MEDS2005 to be developed for offering in 2019 (MEDS coded units of study are only available to students in the Medical Science stream).
Core PHSI coded units
PHSI2005 Integrated Physiology A
Credit points: 6 Teacher/Coordinator: Dr Michael Morris Session: Semester 1 Classes: Three 1 hour lectures per week. Prerequisites: 6cp from CHEM1XXX or (BIOL1XX7 or MBLG1XX1) Prohibitions: PHSI2905 or BMED2401 or BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406 or BMED2801 or BMED2802 or BMED2803 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 Assessment: One written exam; individual written assessments, and quizzes (100%) Practical field work: One 3 hour practical or one 3 hour tutorial per week. Mode of delivery: Normal (lecture/lab/tutorial) day
Note: The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology.
This unit of study offers an introduction to the basic concepts underpinning physiology, excitable cell (nerve and muscle) physiology, as well as the functions of the nervous system (central processing, and sensory and motor systems). It also incorporates cardiovascular and exercise physiology. The practical component involves experiments on humans and isolated tissues, with an emphasis on hypothesis generation and data analysis. Tutorial sessions develop critical thinking, the integrative nature of physiology, and generic skills in scientific writing and presentation. The practicals and tutorials also emphasise group learning and team work.
Textbooks
Dee Unglaub Silverthorn. Human Physiology: An Integrated Approach, 7th edition. 2015. ISBN-10: 0321981227; ISBN-13: 978-0321981226 (International Edition)
PHSI2905 Integrated Physiology A (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Atomu Sawatari Session: Semester 1 Classes: Five 1 hour lectures, one 3 hour practical and one 3 hour tutorial per fortnight. Advanced students will be required to attend the designated Advanced Practical and Tutorial sessions. Students will also be exempt from all Inquiry-based learning tutorials. Prerequisites: A mark of 75 or above in CHEM1XXX or (BIOL1XX7 or MBLG1XX1) Prohibitions: PHSI2005 or BMED2401 or BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406 or BMED2801 or BMED2802 or BMED2803 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 Assessment: One written exam; individual and group oral presentations, 2 practical reports (reports will replace some other assessment items from regular course) (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology.
This unit of study is an extension of PHSI2005 for talented students with an interest in Physiology and Physiological research. The lecture component of the course is run in conjunction with PHSI2005. This unit of study offers a basic introduction to the functions of the nervous system, excitable cell (nerve and muscle) physiology, sensory and motor systems, and central processing. It also incorporates haematology and cardiovascular physiology. The practical component involves experiments on humans and isolated tissues, with an emphasis on hypothesis generation and data analysis. Inquiry-based learning sessions develop critical thinking and generic skills while demonstrating the integrative nature of physiology. Oral and written communication skills are emphasized, as well as group learning and team work. The course will provide an opportunity for students to apply and extend their understanding of physiological concepts by designing and conducting actual experiments. Small class sizes will provide a chance for students to interact directly with faculty members mentoring the practical sessions. Assessment for this stream will be based on oral group presentations and two practical reports. These items will replace some other assessable activities from the regular course.
Textbooks
Dee Unglaub Silverthorn. Human Physiology: An Integrated Approach, 6th edition. 2010. ISBN 10:0-321-1750071; ISBN 13:978-0-321-750075 (International Edition).
PHSI2006 Integrated Physiology B
Credit points: 6 Teacher/Coordinator: Dr Bronwyn McAllan Session: Semester 2 Classes: Three 1 hour lectures per week, and one 3 hour practical or one 3 hour tutorial per week. There will be one 4 hour practical session. Prerequisites: 6cp from CHEM1XXX or (BIOL1XX7 or MBLG1XX1) Prohibitions: PHSI2906 or BMED2401 or BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406 or BMED2801 or BMED2802 or BMED2803 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 Assessment: Two written exams; group and individual written and oral presentations (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: The completion of 6 credit points of MBLG units is highly recommended for progression to Senior Physiology. It is recommended that PHSI2005 is completed before enrolling in PHSI2006.
This unit of study offers a basic introduction to the functions of the remaining body systems: gastrointestinal, respiratory, haematology, endocrine, reproductive and renal. The practical component involves experiments on humans and computer simulations, with an emphasis on hypothesis generation and data analysis. The tutorial sessions develop critical thinking and graduate attributes while demonstrating the integrative nature of physiology. Oral and written communication skills are emphasized, as well as group learning and team work.
Textbooks
Dee Unglaub Silverthorn. Human Physiology: An Integrated Approach, 6th edition. 2012. ISBN-10: 0321750071. ISBN-13: 978-0321750075.
PHSI2906 Integrated Physiology B (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Atomu Sawatari Session: Semester 2 Classes: Three 1 hour lectures per week, and one 3 hour practical and/or one 3 hour tutorial per fortnight. Advanced students will be required to attend the designated Advanced Practical and Tutorial sessions. Prerequisites: A mark of 75 or above in CHEM1XXX or (BIOL1XX7 or MBLG1XX1) Prohibitions: PHSI2006 or BMED2401 or BMED2402 or BMED2403 or BMED2404 or BMED2405 or BMED2406 or BMED2801 or BMED2802 or BMED2803 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 Assessment: One written exam; individual and group oral presentations, 2 practical reports (reports will replace some other assessment items from regular course) (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology.
This unit of study is an extension of PHSI2006 for talented students with an interest in Physiology and Physiological research. The lecture component of the course is run in conjunction with PHSI2006. This unit of study gives a basic introduction to the remaining of the body systems: gastrointestinal, respiratory, endocrine, reproductive and renal. The practical component involves simple experiments on humans, isolated tissues, and computer simulations, with an emphasis on hypothesis generation and data analysis. Both oral and written communication skills are emphasised, as well as group learning. The course will provide an opportunity for students to apply and extend their understanding of physiological concepts by designing and conducting actual experiments. Small class sizes will provide a chance for students to interact directly with faculty members mentoring the practical sessions. Assessment for this stream will be based on oral group presentations and two practical reports. These items will replace some other assessable activities from the regular course.
Textbooks
Dee Unglaub Silverthorn. Human Physiology: An Integrated Approach, 6th edition. 2012. ISBN 10:0-321-750071; ISBN 13:978-0-321-750075 (International Edition).
3000-level units of study
Breadth units
PHSI3009 Frontiers in Cellular Physiology
Credit points: 6 Teacher/Coordinator: A/Prof Anuwat Dinudom Session: Semester 1 Classes: 2 x 1hr/ week lectures and 6 x 2 hr large class tutorials (PBL) per semester Prerequisites: (PHSI2X05 and PHSI2X06) or (BMED2401 and an additional 12 credit points from BMED240X) Prohibitions: PHSI3905, PHSI3906, PHSI3005, PHSI3006, PHSI3909 Assessment: four in-class quizzes, one mid-semester exam, one 2hr final exam, two presentations for problem-based learning and 1 practical class report Practical field work: 3 x 4 hr practicals per semester Mode of delivery: Normal (lecture/lab/tutorial) day
Note: We strongly recommend that students take both (PHSI3009 or PHSI3909) and (PHSI3010 or PHSI3910) units of study concurrently
The aim of this unit is to provide students with advanced knowledge of cellular physiology. There will be a detailed exploration of the signals and pathways cells use to detect and respond to environmental changes and cues. Important signalling systems and homeostatic regulators will be discussed in the context of biological processes and human diseases. Problem-based learning sessions will explore these diseases with student-led teaching. Practical classes will explore physiological techniques for investigating cell signalling and the biophysical properties of cells. Large class tutorials will focus on graduate attribute skills development in the context of reinforcing material discussed in the lectures and practical classes. This unit will develop key attributes that are essential for a science graduate as they move forward in their careers.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
PHSI3909 Frontiers in Cellular Physiology (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Anuwat Dinudom Session: Semester 1 Classes: 2 x 1hr/ week lectures and 3 x 2 hrs large class tutorials (PBL) per semester Prerequisites: A mark of 75 or above in {(PHSI2X05 and PHSI2X06) or [12cp from (BMED2402 or BMED2403 or BMED2406)]} Prohibitions: PHSI3009, PHSI3005, PHSI3905, PHSI3006, PHSI3906 Assessment: four in-class quizzes, one mid-semester exam, one 2hr final exam, one presentations for problem-based learning and one Advanced research report Practical field work: 3 x 4 hr practicals per semester Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The aim of this unit is to provide students with advanced knowledge of cellular physiology. There will be a detailed exploration of the signals and pathways cells use to detect and respond to environmental changes and cues. Important signalling systems and homeostatic regulators will be discussed in the context of biological processes and human diseases. Problem-based learning sessions will explore these diseases with student-led teaching. Practical classes will explore physiological techiques for investigating cell signalling and biophysical properties of cells. Large class tutorials will focus on graduate attribute skills development in the context of reinforcing material discussed in the lectures and practical classes. This unit will develop key attributes that are essential for science a graduate as they move forward in their careers.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
PHSI3010 Reproduction, Development and Disease
Credit points: 6 Teacher/Coordinator: Dr Stuart Fraser Session: Semester 1 Classes: 2 x 1hr lectures per week; 1 guest lecture/problem-based learning class introduction/organisation session per week. 2 x 3 hour problem-based learning classes per semester. Prerequisites: (PHSI2X05 and PHSI2X06) or [12cp from (BCMB2X02, BIOL2X29, GEGE2X01)] or [12cp from (BMED2402, BMED2403, BMED2406)] Prohibitions: PHSI3905, PHSI3906, PHSI3005, PHSI3006, PHSI3910 Assessment: one mid-semester MCQ exam, one 2hr final exam, two problem-solving learning tutorials, 3 practical class reports Practical field work: 3 x 3 hr practicals per semester Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The aim of this unit is to provide students with advanced knowledge of the physiological processes that regulate normal and how these may go awry leading to significant human conditions or even disease. Lectures will focus on; male and female reproductive physiology, endocrinology of reproduction, physiology of fertilisation, cell cycle control and apoptosis, mechanisms of differentiation, gastrulation, cardiovascular development, tissue formation and organogenesis, stem cell biology and the link between developmental processes and cancer. Reprogramming and tissue regeneration will also feature in the lecture content. Problem-based learning will focus on reproductive physiology and regeneration. Practical classes will examine the processes regulating sperm function, embryogenesis and stem cell biology.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
PHSI3910 Reproduction, Development and Disease Adv
Credit points: 6 Teacher/Coordinator: Dr Stuart Fraser Session: Semester 1 Classes: 2 x 1hr lectures per week; 1 guest lecture/problem-based learning class introduction/organisation session per week; 2 x 3 hour stem cell laboratory presentations per semester. Prerequisites: A mark of 75 or above in {(PHSI2X05 and PHSI2X06) or [12cp from (BCMB2X02 or BIOL2X29 or GEGE2X01)] or [12cp from (BMED2402 or BMED2403 or BMED2406)]} Prohibitions: PHSI3010, PHSI3005, PHSI3905, PHSI3006, PHSI3906 Assessment: one mid-semester MCQ exam, one 2hr final exam,stem cell labortory class (2 presentations), 3 practical class reports Practical field work: 4 x 4 hr practicals per semester Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The aim of this unit is to provide students with advanced knowledge of the physiological processes that regulate normal and how these may go awry leading to significant human conditions or even disease. Lectures will focus on; male and female reproductive physiology, endocrinology of reproduction, physiology of fertilisation, cell cycle control and apoptosis, mechanisms of differentiation, gastrulation, cardiovascular development, tissue formation and organogenesis, stem cell biology and the link between developmental processes and cancer. Reprogramming and tissue regeneration will also feature in the lecture content. . Practical classes will examine the processes regulating sperm function, embryogenesis and stem cell biology. Students enrolling in PHSI3910 complete a separate laboratory class centered on stem cell differentiation to replace the problem-based learning exercises in PHSI3010.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
NEUR3006 Neural Information Processing
Credit points: 6 Teacher/Coordinator: A/Prof Bill Phillips Session: Semester 1 Classes: two lectures, 1 two-hour research paper session (journal club, 8 weeks) Prerequisites: PHSI2X05 or (BMED2401 and an additional 12 credit points of BMED240X) Prohibitions: NEUR3001 or NEUR3901 or NEUR3002 or NEUR3902 or NEUR3906 Assessment: one 2hr exam, 1500w essay, paper session oral presentation and participation marks, one prac report plus prac quizzes Practical field work: 1 x 3hour Prac (total of 5 such practical sessions) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit provides an introduction the mechanisms that drive neurons and neural circuits throughout the brain and body. The lectures explore how signal intensity is translated into nerve impulse codes and how this information is again translated through synapses to convey and interpret information about the external world, to control the body and to record information for future use (learning and memory). We also consider how sensory and motor information is integrated through neural circuits in the brain and spinal cord. Practical classes introduce some of the different ways in which the workings of the brain are studied. Each student chooses a journal club that focuses on a specific topic in neuroscience. In the weekly sessions, group members read, present and interpret original research papers, developing a deep understanding of the emerging scientific evidence in the topic area. This senior year unit of study will develop skills in critical analysis, interpretation and communication of new evidence.
Textbooks
Kandel, Schwartz, Jessel, Sigelbaum, Hudspeth. Principles of Neural Science. 5th Ed, Elsevier, NY, 2013
NEUR3906 Neural Information Processing (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Dario Protti Session: Semester 1 Classes: 1 hour lectures per week Prerequisites: A mark of 75 or above in [PHSI2X05 or (BMED2401 and an additional 12 credit points of BMED240X)] Prohibitions: NEUR3001 or NEUR3901 or NEUR3002 or NEUR3902 or NEUR3006 Assessment: One 2hr exam, prac assessment consisting of one group poster presentation and two short MCQ quizzes, one advanced prac report, one written grant proposal (up to 2,000 words) and oral presentation of grant proposal. Practical field work: 1 x 3hour Prac (total of 6 such practical sessions) with the mainstream course and 3-4 x 3 hour advanced pracs. Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit provides an introduction into the mechanisms that drive neurons and neural circuits throughout the brain and body. The lectures explore how signal intensity is translated into nerve impulse codes and how this information is again translated through synapses to convey and interpret information about the external world, to control the body and to record information for future use. We also consider how sensory and motor information is integrated through neural circuits in the brain and spinal cord. Practical classes introduce some of the different ways in which the workings of the brain are studied. This senior year unit of study will develop skills in critical analysis, interpretation and communication of new evidence.
Textbooks
Kandel, Schwartz, Jessel, Sigelbaum, Hudspeth. Principles of Neural Science. 5th Ed, Elsevier, NY, 2013
Specialisation units
NEUR3003 Cellular and Developmental Neuroscience
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Keay, Dr Catherine Leamey Session: Semester 2 Classes: Three 1-hour lectures plus one 1-hour tutorial per week. Prohibitions: NEUR3903 Assumed knowledge: Students who have not successfully completed an introductory neuroscience course are advised to familarise themselves with the content in Bear, Connors and Paradiso "Exploring the Brain". Assessment: Final exam. Mid-semester exam, Major essay/report, attendance and particpation in assessment of Advanced student presentations (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This second semester unit is designed to introduce students to "cutting edge" issues in the neurosciences. This course is a combination of small lectures on current issues in cellular and developmental neuroscience and a research-based library project. Issues covered in the lecture series will include the role of glial on cerebral blood flow and neural transmission, neurochemistry and psychiatric disorders and the development of central and peripheral nervous systems.
Textbooks
Kandell, Schwartz and Jessell. Principles of Neural Science. 4th edition. Elsevier. 2000.
NEUR3903 Cellular and Developmental Neurosci. (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Keay, Dr Catherine Leamey Session: Semester 2 Classes: Three 1-hour lectures and one 2-hour lab session per week. Prerequisites: Annual average mark of 70 or above in the previous year Prohibitions: NEUR3003 Assumed knowledge: Students who have not successfully completed an introductory neuroscience course are advised to familarise themselves with the content in Bear, Connors and Paradiso "Exploring the Brain". Assessment: Final exam. Mid-semester exam, Mini-lecture presentation and resources, Attendance at and participation in assessment of advanced student presentations (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit encompasses the material taught in NEUR3003. Advanced students perform a research project and present a mini-lecture on a current topic in neuroscience.
Textbooks
Kandell, Schwartz and Jessell. Principles of Neural Science. 4th edition. Elsevier. 2000.
NEUR3004 Integrative Neuroscience
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Keay, Dr Catherine Leamey Session: Semester 2 Classes: One 1-hour lecture, one 2-hour tutorial per week. Prohibitions: NEUR3904 Assumed knowledge: Students who have not successfully completed an introductory neuroscience course are advised to familarise themselves with the content in Bear, Connors and Paradiso "Exploring the Brain". Assessment: Mid-semester exam, Final exam, 3 short in-semester assessments/reports, Tutorial participation, attendance and at participation in assessment of Advanced student presentations (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This second semester unit is designed to introduce students to "cutting edge" issues in the neurosciences and to be taken in conjunction with NEUR3003. This course is a combination of small group lectures on current issues in neuroscience, seminar groups and a research-based library project. Seminars will be held on topics including imaging pain, emotions, cortical development and plasticity, colour vision, stroke and hypertension, and long-term regulation of blood pressure.
Textbooks
Kandell, Schwartz and Jessell. Principles of Neural Science. 4th edition.
NEUR3904 Integrative Neuroscience (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Keay, Dr Catherine Leamey Session: Semester 2 Classes: Up to one 1-hour lecture, one 2-hour tutorial and one two hour laboratory session per week on average. Prerequisites: Annual average mark of 70 or above in the previous year Prohibitions: NEUR3004 Assumed knowledge: Students who have not successfully completed an introductory neuroscience course are advised to familarise themselves with the content in Bear, Connors and Paradiso "Exploring the Brain". Assessment: Mid-semester exam, Final exam, Major essay/report, Tutorial participation, Attendance at and participation in assessment of advanced student presentations (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit encompasses the material taught in NEUR3004. Advanced students perform a research project and present a mini-lecture on a current topic in neuroscience research.
BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
Textbooks
Kandell, Schwartz and Jessell. Principles of Neural Science. 4th edition.
PHSI3011 Frontiers in Whole Body Physiology
Credit points: 6 Teacher/Coordinator: Prof Phillip Poronnik Session: Semester 2 Classes: 2 x 1hr lectures, 4 x 2 hr class tutorials per semester (Week 3 and 13) and 2 x 1 hr tutorial preparation session (week 2 and 12), one contcept based learning tutorial 3 x 2 hours Prerequisites: (PHSI2X05 and PHSI2X06) or (BMED2401 and BMED2402) Prohibitions: PHSI3007, PHSI3008, PHSI3907, PHSI3908, PHSI3911 Assessment: one mid-semester exam, one 2hr final exam, two tutorial reports, 3 practical class reports Practical field work: 3 x 4 hr practicals per semester Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The aim of this unit is to provide students with advanced knowledge of whole body physiology. Lectures will provide insight into the mechanisms that regulate homeostasis throughout the whole body with a particular focus not only on the interplay between major organ systems, but also variability amongst individuals. The emphasis in this unit is on recent advances at the frontiers of human physiology. Our current understandings of how we functions will be explored at the molecular, cellular and whole body level. This is detailed fundamental knowledge that is key to understanding the transitions that occur from health to disease. Hands on practical classes will explore the physiology presented in the lectures and tutorial sessions will investigate what 'normal' is in terms of whole body physiology.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science; Siverthorn D, Human Physiology: an integrated approach. 7th Edition Pearson.
PHSI3911 Frontiers in Whole Body Physiology (Adv)
Credit points: 6 Teacher/Coordinator: Prof Phillip Poronnik Session: Semester 2 Classes: 2 x 1hr lectures, 4 x 2 hr class tutorials per semester (Week 3 and 13) and 2 x 1 hr tutorial preparation session (week 2 and 12), one contcept based learning tutorial 3 x 2 hours Prerequisites: A mark of 75 or above in [(PHSI2X05 and PHSI2X06) or (BMED2401 and BMED2402)] Prohibitions: PHSI3011, PHSI3007, PHSI3907, PHSI3008, PHSI3908 Assessment: one mid-semester exam, one 2hr final exam, two tutorial reports, 3 practical class reports Practical field work: 3 x 4 hr practicals per semester Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The aim of this unit is to provide students with advanced knowledge of whole body physiology. Lectures will provide insight into the mechanisms that regulate homeostasis throughout the whole body with a particular focus not only on the interplay between major organ systems, but also variability amongst individuals. The emphasis in this unit is on recent advances at the frontiers of human physiology. Our current understandings of how we functions will be explored at the molecular, cellular and whole body level. This is detailed fundamental knowledge that is key to understanding the transitions that occur from health to disease. Hands on practical classes will explore the physiology presented in the lectures and tutorial sessions will investigate what ¿normal¿ is in terms of whole body physiology.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science; Siverthorn D, Human Physiology: an integrated approach. 7th Edition Pearson.
PHSI3012 Physiology of Disease
Credit points: 6 Teacher/Coordinator: A/Prof Matthew Naylor Session: Semester 2 Classes: 2 x 1hr lectures, 12 x 1hr tutorials (weeks 3-5 and 8-10 only), 2 x 6hr practical (weeks 4-5 and 8-9). Prerequisites: (PHSI2X05 and PHSI2X06) or (BMED2401 and BMED2402) Prohibitions: PHSI3007, PHSI3008, PHSI3907, PHSI3908, PHSI3912 Assessment: one mid-semester MCQ exam, one 2hr final exam, two problem-solving learning tutorials, 2 practical class reports Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The aim of this unit is to provide students with advanced knowledge of whole body physiology. Lectures will provide insight into the mechanisms that regulate normal homeostasis throughout the whole body and how defects in these processes can lead to significant human disease. The emphasis in this unit is on recent advances at the frontiers of human physiology. The processes leading to cancer, cardiovascular and metabolic disease will be explored at the molecular, cellular and whole body level. Problem-based learning will focus on cancer and cardiovascular disease and practical classes will utilise both wet lab and online resources to dissect the processes by which normal physiological processes become aberrant leading to human disease.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
PHSI3912 Physiology of Disease (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Matthew Naylor Session: Semester 2 Classes: 2 x 1hr lectures, 2 x 6hr practical (weeks 4-5 and 8-9), Advanced project. Prerequisites: A mark of 75 or above in [(PHSI2X05 and PHSI2X06) or (BMED2401 and BMED2402)] Prohibitions: PHSI3012, PHSI3007, PHSI3907, PHSI3008, PHSI3908 Assessment: one mid-semester MCQ exam, one 2hr final exam, Advanced project report, 2 practical class reports Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The aim of this unit is to provide students with advanced knowledge of whole body physiology. Lectures will provide insight into the mechanisms that regulate normal homeostasis throughout the whole body and how defects in these processes can lead to significant human disease. The emphasis in this unit is on recent advances at the frontiers of human physiology. The processes leading to cancer, cardiovascular and metabolic disease will be the specific will be explored at the molecular, cellular and whole body level. Students will undertake an Advanced Project Problem-based learning will focus on cancer and cardiovascular disease and Practical classes will utilise both wet lab and online resources to dissect the processes by which normal physiological processes become aberrant leading to human disease.
Textbooks
Alberts, B. Molecular Biology of the Cell. 5th edition. Garland Science
HSTO3003 Cells and Development: Theory
Credit points: 6 Teacher/Coordinator: Prof Frank Lovicu Session: Semester 2 Classes: Four to five 1-hour theory lectures and/or one 1-hour tutorial per week Assumed knowledge: ANAT2008 or BMED2401) and Human biology; BIOL1XX8 or BIOL1XX3 or MEDS1X01 Assessment: One 2-hour exam, tutorial research papers and Seminar (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
The main emphasis of this unit of study concerns the mechanisms that control animal development. Early developmental processes including fertilisation, cleavage, and gastrulation leading to the formation of the primary germ layers and subsequent body organs are described in a range of animals, mainly vertebrates. Stem cells of both embryonic and adult origin will be covered. Emphasis will be placed on the parts played by inductive cell and tissue interactions in cell and tissue differentiation, morphogenesis and pattern formation. This will be studied at both cellular and molecular levels.
Textbooks
Gilbert, SF. Developmental Biology. 11th edition. Sinauer Associates Inc. 2016.