University of Sydney Handbooks - 2018 Archive

Download full 2018 archive Page archived at: Fri, 21 Sep 2018 05:39:46 +0000

Nanoscience and Nanotechnology

Errata
item Errata Date
1. MATH1021 Calculus Of One Variable: Semester 2 session has been added. 1/2/2018

NANOSCIENCE AND NANOTECHNOLOGY

Nanoscience and Nanotechnology program

A program in Nanoscience and Nanotechnology requires 108 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units
(iii) 12 credit points of 4000-level core units
(iv) 12 credit points of 4000-level selective units
(v) 12 credit points of 4000-level project units
(vi) A 48 credit point major in Chemistry or Physics

Units of study

The units of study are listed below.

1000-level units of study

Core
MATH1021 Calculus Of One Variable

Credit points: 3 Session: Semester 1 Classes: 2x1-hr lectures; 1x1-hr tutorial per week Prohibitions: MATH1011 or MATH1901 or MATH1906 or MATH1111 or ENVX1001 or MATH1001 or MATH1921 or MATH1931 Assumed knowledge: HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February). Assessment: exam, quizzes, assignments Mode of delivery: Normal (lecture/lab/tutorial) day
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates differential calculus and integral calculus of one variable and the diverse applications of this theory. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include complex numbers, functions of a single variable, limits and continuity, differentiation, optimisation, Taylor polynomials, Taylor's Theorem, Taylor series, Riemann sums, and Riemann integrals.
Textbooks
As set out in the Junior Mathematics Handbook.
MATH1921 Calculus Of One Variable (Advanced)

Credit points: 3 Session: Semester 1 Classes: 2x1-hr lectures; and 1x1-hr tutorial per week Prohibitions: MATH1001 or MATH1011 or MATH1906 or MATH1111 or ENVX1001 or MATH1901 or MATH1021 or MATH1931 Assumed knowledge: (HSC Mathematics Extension 2) OR (Band E4 in HSC Mathematics Extension 1) or equivalent. Assessment: exam, quizzes, assignments Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates differential calculus and integral calculus of one variable and the diverse applications of this theory. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include complex numbers, functions of a single variable, limits and continuity, differentiation, optimisation, Taylor polynomials, Taylor's Theorem, Taylor series, Riemann sums, and Riemann integrals. Additional theoretical topics included in this advanced unit include the Intermediate Value Theorem, Rolle's Theorem, and the Mean Value Theorem.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1931 Calculus Of One Variable (SSP)

Credit points: 3 Session: Semester 1 Classes: 2x1-hr lectures; 1x1-hr seminar; and 1x1-hr tutorial per week Prohibitions: MATH1001 or MATH1011 or MATH1901 or MATH1111 or ENVX1001 or MATH1906 or MATH1021 or MATH1921 Assumed knowledge: Band E4 in HSC Mathematics Extension 2 or equivalent. Assessment: exam, quizzes, assignments, seminar participation Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: Enrolment is by invitation only.
The Mathematics Special Studies Program is for students with exceptional mathematical aptitude, and requires outstanding performance in past mathematical studies. Students will cover the material of MATH1921 Calculus of One Variable (Adv), and attend a weekly seminar covering special topics on available elsewhere in the Mathematics and Statistics program.
MATH1002 Linear Algebra

Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1012 or MATH1014 or MATH1902 Assumed knowledge: HSC Mathematics or MATH1111. Students who have not completed HSC Mathematics (or equivalent) are strongly advised to take the Mathematics Bridging Course (offered in February). Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1902 Linear Algebra (Advanced)

Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1002 or MATH1012 or MATH1014 Assumed knowledge: (HSC Mathematics Extension 2) OR (90 or above in HSC Mathematics Extension 1) or equivalent Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. It parallels the normal unit MATH1002 but goes more deeply into the subject matter and requires more mathematical sophistication.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1023 Multivariable Calculus and Modelling

Credit points: 3 Session: Semester 2 Classes: 2x1-hr lectures; 1x1-hr tutorial per week Prohibitions: MATH1013 or MATH1903 or MATH1907 or MATH1003 or MATH1923 or MATH1933 Assumed knowledge: HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February). Assessment: exam, quizzes, assignments Mode of delivery: Normal (lecture/lab/tutorial) day
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates multivariable differential calculus and modelling. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include mathematical modelling, first order differential equations, second order differential equations, systems of linear equations, visualisation in 2 and 3 dimensions, partial derivatives, directional derivatives, the gradient vector, and optimisation for functions of more than one variable.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1923 Multivariable Calculus and Modelling (Adv)

Credit points: 3 Session: Semester 2 Classes: 2x1-hr lectures; and 1x1-hr tutorial per week Prohibitions: MATH1003 or MATH1013 or MATH1907 or MATH1903 or MATH1023 or MATH1933 Assumed knowledge: (HSC Mathematics Extension 2) OR (Band E4 in HSC Mathematics Extension 1) or equivalent. Assessment: exam, quizzes, assignments Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates multivariable differential calculus and modelling. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include mathematical modelling, first order differential equations, second order differential equations, systems of linear equations, visualisation in 2 and 3 dimensions, partial derivatives, directional derivatives, the gradient vector, and optimisation for functions of more than one variable. Additional topics covered in this advanced unit of study include the use of diagonalisation of matrices to study systems of linear equation and optimisation problems, limits of functions of two or more variables, and the derivative of a function of two or more variables.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1933 Multivariable Calculus and Modelling (SSP)

Credit points: 3 Session: Semester 2 Classes: 2x1-hr lectures; 1x1-hr seminar; and 1x1-hr tutorial per week Prohibitions: MATH1003 or MATH1903 or MATH1013 or MATH1907 or MATH1023 or MATH1923 Assumed knowledge: Band E4 in HSC Mathematics Extension 2 or equivalent. Assessment: exam, quizzes, assignments, seminar participation Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: Enrolment is by invitation only.
The Mathematics Special Studies Program is for students with exceptional mathematical aptitude, and requires outstanding performance in past mathematical studies. Students will cover the material of MATH1923 Multivariable Calculus and Modelling (Adv), and attend a weekly seminar covering special topics on available elsewhere in the Mathematics and Statistics program.
MATH1005 Statistical Thinking with Data

Credit points: 3 Session: Semester 2,Summer Main,Winter Main Classes: Lectures 2 hrs/week; Practical 1 hr/week Prohibitions: MATH1015 or MATH1905 or STAT1021 or STAT1022 or ECMT1010 or ENVX1001 or ENVX1002 or BUSS1020 Assumed knowledge: HSC Mathematics. Students who have not completed HSC Mathematics (or equivalent) are strongly advised to take the Mathematics Bridging Course (offered in February). Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
In a data-rich world, global citizens need to problem solve with data, and evidence based decision-making is essential is every field of research and work.
This unit equips you with the foundational statistical thinking to become a critical consumer of data. You will learn to think analytically about data and to evaluate the validity and accuracy of any conclusions drawn. Focusing on statistical literacy, the unit covers foundational statistical concepts, including the design of experiments, exploratory data analysis, sampling and tests of significance.
Textbooks
Freedman, Pisani and Purves, Statistics, Norton, 2007
MATH1905 Statistical Thinking with Data (Advanced)

Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1005 or MATH1015 or STAT1021 or STAT1022 or ECMT1010 or ENVX1001 or ENVX1002 or BUSS1020 Assumed knowledge: (HSC Mathematics Extension 2) OR (90 or above in HSC Mathematics Extension 1) or equivalent Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This Advanced level unit of study parallels the normal unit MATH1005 but goes more deeply into the subject matter and requires more mathematical sophistication.
Textbooks
As set out in the Junior Mathematics Handbook

2000-level units of study

Core
MATH2021 Vector Calculus and Differential Equations

Credit points: 6 Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial; and 1x1-hr practice class per week Prerequisites: (MATH1X21 or MATH1931 or MATH1X01 or MATH1906) and (MATH1XX2) and (MATH1X23 or MATH1933 or MATH1X03 or MATH1907) Prohibitions: MATH2921 or MATH2065 or MATH2965 or MATH2061 or MATH2961 or MATH2067 Assessment: assessment for this unit consists of quizzes, assignments, and a final exam Mode of delivery: Normal (lecture/lab/tutorial) day
This unit opens with topics from vector calculus, including vector-valued functions (parametrised curves and surfaces; vector fields; div, grad and curl; gradient fields and potential functions), line integrals (arc length; work; path-independent integrals and conservative fields; flux across a curve), iterated integrals (double and triple integrals, polar, cylindrical and spherical coordinates; areas, volumes and mass; Green's Theorem), flux integrals (flow through a surface; flux integrals through a surface defined by a function of two variables, through cylinders, spheres and other parametrised surfaces), Gauss' and Stokes' theorems. The unit then moves to topics in solution techniques for ordinary and partial differential equations (ODEs and PDEs) with applications. It provides a basic grounding in these techniques to enable students to build on the concepts in their subsequent courses. The main topics are: second order ODEs (including inhomogeneous equations), higher order ODEs and systems of first order equations, solution methods (variation of parameters, undetermined coefficients) the Laplace and Fourier Transform, an introduction to PDEs, and first methods of solutions (including separation of variables, and Fourier Series).
Textbooks
As set out in the Intermediate Mathematics Handbook
MATH2921 Vector Calculus and Differential Eqs (Adv)

Credit points: 6 Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial; and 1x1-hr practice class per week Prerequisites: [(MATH1921 or MATH1931 or MATH1901 or MATH1906) or (a mark of 65 or above in MATH1021 or MATH1001)] and [MATH1902 or (a mark of 65 or above in MATH1002)] and [(MATH1923 or MATH1933 or MATH1903 or MATH1907) or (a mark of 65 or above in MATH1023 or MATH1003)] Prohibitions: MATH2021 or MATH2065 or MATH2965 or MATH2061 or MATH2961 or MATH2067 Assessment: assessment for this unit consists of quizzes, assignments, and a final exam. Mode of delivery: Normal (lecture/lab/tutorial) day
This is the advanced version of MATH2021, with more emphasis on the underlying concepts and mathematical rigour. The vector calculus component of the course will include: parametrised curves and surfaces, vector fields, div, grad and curl, gradient fields and potential functions, lagrange multipliers line integrals, arc length, work, path-independent integrals, and conservative fields, flux across a curve, double and triple integrals, change of variable formulas, polar, cylindrical and spherical coordinates, areas, volumes and mass, flux integrals, and Green's Gauss' and Stokes' theorems. The Differential Equations half of the course will focus on ordinary and partial differential equations (ODEs and PDEs) with applications with more complexity and depth. The main topics are: second order ODEs (including inhomogeneous equations), series solutions near a regular point, higher order ODEs and systems of first order equations, matrix equations and solutions, solution methods (variation of parameters, undetermined coefficients) the Laplace and Fourier Transform, elementary Sturm-Liouville theory, an introduction to PDEs, and first methods of solutions (including separation of variables, and Fourier Series). The unit then moves to topics in solution techniques for ordinary and partial differential equations (ODEs and PDEs) with applications. It provides a more thorough grounding in these techniques to enable students to build on the concepts in their subsequent courses. The main topics are: second order ODEs (including inhomogeneous equations), higher order ODEs and systems of first order equations, solution methods (variation of parameters, undetermined coefficients) the Laplace and Fourier Transform, an introduction to PDEs, and first methods of solutions (including separation of variables, and Fourier Series).
Textbooks
As set out in the Intermediate Mathematics Handbook
NANO2XXX to be developed for offering in 2019.

4000-level units of study

Core
NANO4001 and NANO4002 to be developed for offering in 2019.
Project units
NANO4003 and NANO4004 to be developed for offering in 2019.
Selective
AMME4XX1, AMME4XX2, AMME4XX3, CHNG4XXX, ELEC4XXXX and PHYS4XXX to be developed for offering in 2020.