Genetics and Genomics
Errata
Item | Errata | Date |
---|---|---|
1. | BCHM3092 Proteomics and Functional Genomic Prerequisites have changed. They now read: P [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or DATA2002 or ENVX2001 or BIOL2X22 or GEGE2X01 or MBLG2X71 or QBIO2001)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] | 1/2/2018 |
2. | BCHM3992 Proteomics and Functional Genomics (Adv) Prerequisites have changed. They now read: An average mark of 75 or above in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or DATA2002 or ENVX2001 or BIOL2X22 or GEGE2X01 or MBLG2X71 or QBIO2001)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] | 1/2/2018 |
3. | BCMB2001 Biochemistry and Molecular Biology: Prerequisites have changed. They now read: P: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903) |
8/3/2018 |
4. | BCMB2901 Biochemistry and Molecular Biology (Advanced): Prerequisites have changed. They now read: P A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903) | 8/3/2018 |
GENETICS AND GENOMICS
Advanced coursework and projects will be available in 2020 for students who complete this major.
Genetics and Genomics major
A major in Genetics and Genomics requires 48 credit points from this table including:
(i) 12 credit points of 1000-level selective units
(ii) 12 credit points of 2000-level selective units
(iii) 18 credit points of 3000-level core units
(iv) 6 credit points of 3000-level selective units
Genetics and Genomics minor
A minor in Genetics and Genomics requires 36 credit points from this table including:
(i) 12 credit points of 1000-level selective units
(ii) 12 credit points of 2000-level selective units
(iii) 12 credit points of 3000-level selective units
Units of study
The units of study are listed below.
1000-level units of study
Selective
CHEM1011 Fundamentals of Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February). Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1111 Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1,Semester 2,Summer Main Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures and 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3hr practical per week for 12 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, presentations, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
BIOL1007 From Molecules to Ecosystems
Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2,Summer Main Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Pauline Ross Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)
Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), project report which includes written report and presentation (50%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be either a synthetic biology project investigating genetically engineered organisms or organismal/ecosystems biology. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
BIOL1006 Life and Evolution
Credit points: 6 Teacher/Coordinator: A/Prof Charlotte Taylor Session: Semester 1,Summer Main Classes: Two lectures per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Practical and communication (40%), during semester exams (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Please see unit outline on LMS
BIOL1906 Life and Evolution (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent. Assessment: Practical and communication (40%), during semester exams (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Please see unit outline on LMS
BIOL1996 Life and Evolution (SSP)
Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures as per BIOL1906; one 3-hour practical per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), practical reports (25%), seminar presentation (15%), lab note book (5%), prelaboratory quizzes (5%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS
BIOL1008 Human Biology
Credit points: 6 Teacher/Coordinator: Dr Osu Lilje Session: Semester 1,Summer Main Classes: Lectures; six 3-hour practical sessions; six workshops and tutorials; students encouraged to spend 1-2 hours per week accessing online resources Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or MEDS1001 or MEDS1901 or BIOL1908 or BIOL1998 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Written and oral presentation, quiz, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences.
Textbooks
TBA
BIOL1908 Human Biology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Osu Lilje Session: Semester 1 Classes: Lectures; six 3-hour practical sessions; six workshops and tutorials.; in addition, students are strongly encouraged to spend 1-2 hours per week accessing on-line resources Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or MEDS1001 or MEDS1901 or BIOL1008 or BIOL1998 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Written and oral presentation, quiz, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences. The advanced unit has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest lecturers from medical science industries. The nature of these components may vary from year to year.
Textbooks
TBA
BIOL1998 Human Biology (Special Studies Program)
Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures; 12 3-hour practical sessions; students are strongly encouraged to spend 1-2 hours on online resources Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1991 or BIOL1996 or MEDS1001 or MEDS1901 or BIOL1008 or BIOL1908 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: written and oral presentation, quiz, skills-based assessment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences.
Textbooks
TBA
MEDS1001 Human Biology
Credit points: 6 Teacher/Coordinator: Prof Philip Poronnik Session: Semester 1 Classes: this unit of study will involve between 5-6 hours of face-to-face activities run on the camperdown campus, these contact hours will comprise lectures; six 3-hour practical sessions; six workshops and tutorials Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1008 or BIOL1908 or BIOL1998 or MEDS1901 Assessment: Written and oral communication, quiz, practical and workshop reports, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the medical sciences suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology and medical sciences. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in the medical sciences.
Textbooks
TBA
MEDS1901 Human Biology (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Philip Poronnik Session: Semester 1 Classes: this unit of study will involve between 5-6 hours of face-to-face activities run on the camperdown campus Prerequisites: 85 or above in HSC Biology or equivalent Prohibitions: BIOL1003 or BIOL1903 or BIOL1993 or BIOL1008 or BIOL1908 or BIOL1998 or MEDS1001 Assessment: Written and oral presentation, quiz, assignment, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
What will it mean to be human in 2100? How will we be able to control our complex bodily mechanisms to maintain health and fight disease? Advances in the human biology suggest we will age more slowly and new technologies will enhance many bodily structures and functions. This unit of study will explore maintenance of health through nutritional balance, aerobic health, defence mechanisms and human diversity. You will learn key structural features from the subcellular level to the whole organ and body, and learn about essential functional pathways that determine how the body regulates its internal environment and responds to external stimuli and disease. Together we will investigate nutrition, digestion and absorption, cardiovascular and lung function, reproduction, development, epigenetics, and regulation of function through various interventions. You will receive lectures from experts in the field of human biology and medical sciences, supported by practical classes, workshops and on-line resources that leverage off state-of-the-art technologies to develop your practical, critical thinking, communication, collaboration, digital literacy, problem solving, and enquiry-based skills in human biology. This unit of study will provide you with the breadth and depth of knowledge and skills for further studies in majors in medical sciences. The advanced unit has the same overall concepts as the mainstream unit but material is discussed in a manner that offers a greater level of challenge and academic rigour. Students enrolled in the advanced stream will participate in alternative components which may for example include guest lecturers from medical science industries. The nature of these components may vary from year to year.
Textbooks
TBA
MEDS coded units of study are only available to students in the Medical Science stream.
2000-level units of study
Selective
BCMB2001 Biochemistry and Molecular Biology
Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 1 Classes: Three lectures/tutorials per week ; one 4-hour practical session per fortnight Prerequisites: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of CHEM1XX1 Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2901 Assessment: Assignments, skills-based assessment, quizzes, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Then we will explore how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Our practicals, along with other guided and online learning sessions will introduce you to widely applied and cutting edge tools that are essential for modern biochemistry and molecular biology. By the end of this unit you will be equipped with foundational skills and knowledge to support your studies in the life and medical sciences.
Textbooks
Lehninger Principles of Biochemistry 7th edition (2016) David L. Nelson Michael M. Cox Macmillan (ISBN-10: 1-4641-2611-9; ISBN-13: 978-1-4641-2611-6)
BCMB2901 Biochemistry and Molecular Biology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 1 Classes: Three 1-hour lectures/tutorials per week; one 4-hour practical per fortnight Prerequisites: A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and CHEM1XX1 Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 Assessment: Assignments, quiz, skills-based assessment, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Then we will explore how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. The advanced laboratory component will provide students with an authentic research laboratory experience while in the theory component, current research topics will be presented in a problem-based format through dedicated advanced tutorial sessions. This material will be assessed by creative student-centered activities supported by eLearning platforms.
Textbooks
Lehninger Principles of Biochemistry 7th edition (2016) David L. Nelson Michael M. Cox Macmillan (ISBN-10: 1-4641-2611-9; ISBN-13: 978-1-4641-2611-6)
QBIO2001 Molecular Systems Biology
Credit points: 6 Teacher/Coordinator: Prof David James (Coordinator), Dr Mark Larance Session: Semester 2 Classes: Two 1-hour lectures; one 3-hour practical session on a weekly basis Assumed knowledge: Metabolism, protein synthesis, gene regulation, quantitative and statistical skills Assessment: One 3-hour final exam (50%), three 45-minute quizzes (20%), one 5-minute presentation (10%), laboratory assessment and practical book (20%) Mode of delivery: Normal (lecture/lab/tutorial) day
Experimental approaches to the study of biological systems are shifting from hypothesis driven to hypothesis generating research. Large scale experiments at the molecular scale are producing enormous quantities of data ("Big Data") that need to be analysed to derive significant biological meaning. For example, monitoring the abundance of tens of thousands of proteins simultaneously promises ground-breaking discoveries. In this unit, you will develop specific analytical skills required to work with data obtained in the biological and medical sciences. The unit covers quantitative analysis of biological systems at the molecular scale including modelling and visualizing patterns using differential equations, experimental design and data types to understand disease aetiology. You will also use methods to model cellular systems including metabolism, gene regulation and signalling. The practical program will enable you to generate data analysis workflows, and gain a deep understanding of the statistical, informatics and modelling tools currently being used in the field. To leverage multiple types of expertise, the computer lab-based practical component of this unit will be predominantly a team-based collaborative learning environment. Upon completion of this unit, you will have gained skills to find meaningful solutions to difficult biological and disease-related problems with the potential to change our lives.
Textbooks
An Introduction to Systems Biology: Design Principles of Biological Circuits, Uri Alon, (Chapman and Hall/CRC, 2007). Systems Biology, Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig, (Wiley-Blackhall, 2009). Molecular biology of the cell, Alberts B et al (6th edition, Garland Science, 2015) Discovering Statistics Using R, Andy Field (2012, SAGE Publications Ltd). Computational and Statistical Methods for Protein Quantitation by Mass Spectrometry, Martens L et al (Wiley, 2013)
GEGE2001 Genetics and Genomics
Credit points: 6 Teacher/Coordinator: Prof Peter Sharp Session: Semester 1,Semester 2 Classes: Two lectures; one 3-hour practical session; and one peer assisted study session on a weekly basis Prohibitions: GENE2002 or MBLG2972 or GEGE2901 or MBLG2072 Assumed knowledge: Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression. Assessment: Assignments, quizzes, presentation, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution.
GEGE2901 Genetics and Genomics (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Peter Sharp Session: Semester 1,Semester 2 Classes: Two lectures; one 3-hour practical session; and one peer assisted study session on a weekly basis Prerequisites: Annual average mark of at least 70 Prohibitions: GENE2002 or MBLG2072 or GEGE2001 or MBLG2972 Assumed knowledge: Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression. Assessment: Assignments, quizzes, presentation, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution. The Advanced mode of Genetics and Genomics will provide you with challenge and a higher level of academic rigour. You will have the opportunity to plan and carry out a project that will develop your skills in contemporary genetics/molecular biology techniques and will provide you with a greater depth of disciplinary understanding. The Advanced mode will culminate in a written report and in an oral presentation where you will discuss a recent breakthrough that has been enabled by the use of modern genetics and genomics technologies. This is a unit for anyone wanting to better understand the how genetics has shaped the earth and how it will shape the future.
Textbooks
TBA
MEDS2003 and AVBS2005 to be developed for offering in 2019 (MEDS coded units of study are only available to students in the Medical Science stream).
3000-level units of study
Major core
BCHM3092 Proteomics and Functional Genomics
Credit points: 6 Teacher/Coordinator: Prof Stuart Cordwell, Jill Johnston Session: Semester 2 Classes: Two 1-hour lectures per week and one 3-hour practical per week. Prerequisites: [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or DATA2002 or ENVX2001 or BIOL2X22 or MBLG2X71 or QBIO2001)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3992 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester (practical work and assignments 30%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study will focus on the high throughput methods for the analysis of gene structure and function (genomics) and the analysis of proteins (proteomics), which are at the forefront of discovery in the biomedical sciences. The course will concentrate on the hierarchy of gene-protein-structure-function through an examination of modern technologies built on the concepts of genomics versus molecular biology, and proteomics versus biochemistry. Technologies to be examined include DNA sequencing, nucleic acid and protein microarrays, two-dimensional gel electrophoresis of proteins, uses of mass spectrometry for high throughput protein identification, isotope tagging for quantitative proteomics, high-performance liquid chromatography, high-throughput functional assays, affinity chromatography and modern methods for database analysis. Particular emphasis will be placed on how these technologies can provide insight into the molecular basis of changes in cellular function under both physiological and pathological conditions as well as how they can be applied to biotechnology for the discovery of biomarkers, diagnostics, and therapeutics. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in proteomics and genomics.
BCHM3992 Proteomics and Functional Genomics (Adv)
Credit points: 6 Teacher/Coordinator: Prof Stuart Cordwell, Jill Johnston Session: Semester 2 Classes: Two 1-hour lectures per week and one 3-hour practical per fortnight. Prerequisites: [An average mark of 75 or above in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or DATA2002 or ENVX2001 or BIOL2X22 or MBLG2X71 or QBIO2001)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3092 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester (practical work and assignments 30%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study will focus on the high throughput methods for the analysis of gene structure and function (genomics) and the analysis of proteins (proteomics) which are at the forefront of discovery in the biomedical sciences. The course will concentrate on the hierarchy of gene-protein-structure-function through an examination of modern technologies built on the concepts of genomics versus molecular biology, and proteomics versus biochemistry. Technologies to be examined include DNA sequencing, nucleic acid and protein microarrays, two-dimensional gel electrophoresis of proteins, uses of mass spectrometry for high throughput protein identification, isotope tagging for quantitative proteomics, high-performance liquid chromatography, high-throughput functional assays, affinity chromatography and modern methods for database analysis. Particular emphasis will be placed on how these technologies can provide insight into the molecular basis of changes in cellular function under both physiological and pathological conditions as well as how they can be applied to biotechnology for the discovery of biomarkers, diagnostics, and therapeutics. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in proteomics and genomics.
The lecture component of this unit of study is the same as BCHM3092. Qualified students will attend seminars/practical classes in which more sophisticated topics in proteomics and genomics will be covered.
The lecture component of this unit of study is the same as BCHM3092. Qualified students will attend seminars/practical classes in which more sophisticated topics in proteomics and genomics will be covered.
BIOL3018 Gene Technology and Genomics
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX) Prohibitions: BIOL3918 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the regulation, impact and implications of genetic engineering and genomics. Topics include biological sequence data and databases, comparative genomics, the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines, new diagnostic techniques for human and veterinary disease, and the genetic engineering of animals and plants. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and bioinformatics, immunological detection of proteins, and the genetic transformation and assay of plants.
BIOL3918 Gene Technology and Genomics (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX)] Prohibitions: BIOL3018 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of BIOL3018 Gene Technology and Genomics. The content and nature of these components may vary from year to year.
GEGE3X04 to be developed for offering in 2019.
Major selective
BIOL3033 and QBIO3X01 to be developed for offering in 2019.
Minor selective
BCHM3092 Proteomics and Functional Genomics
Credit points: 6 Teacher/Coordinator: Prof Stuart Cordwell, Jill Johnston Session: Semester 2 Classes: Two 1-hour lectures per week and one 3-hour practical per week. Prerequisites: [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or DATA2002 or ENVX2001 or BIOL2X22 or MBLG2X71 or QBIO2001)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3992 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester (practical work and assignments 30%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study will focus on the high throughput methods for the analysis of gene structure and function (genomics) and the analysis of proteins (proteomics), which are at the forefront of discovery in the biomedical sciences. The course will concentrate on the hierarchy of gene-protein-structure-function through an examination of modern technologies built on the concepts of genomics versus molecular biology, and proteomics versus biochemistry. Technologies to be examined include DNA sequencing, nucleic acid and protein microarrays, two-dimensional gel electrophoresis of proteins, uses of mass spectrometry for high throughput protein identification, isotope tagging for quantitative proteomics, high-performance liquid chromatography, high-throughput functional assays, affinity chromatography and modern methods for database analysis. Particular emphasis will be placed on how these technologies can provide insight into the molecular basis of changes in cellular function under both physiological and pathological conditions as well as how they can be applied to biotechnology for the discovery of biomarkers, diagnostics, and therapeutics. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in proteomics and genomics.
BCHM3992 Proteomics and Functional Genomics (Adv)
Credit points: 6 Teacher/Coordinator: Prof Stuart Cordwell, Jill Johnston Session: Semester 2 Classes: Two 1-hour lectures per week and one 3-hour practical per fortnight. Prerequisites: [An average mark of 75 or above in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or DATA2002 or ENVX2001 or BIOL2X22 or MBLG2X71 or QBIO2001)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3092 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester (practical work and assignments 30%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study will focus on the high throughput methods for the analysis of gene structure and function (genomics) and the analysis of proteins (proteomics) which are at the forefront of discovery in the biomedical sciences. The course will concentrate on the hierarchy of gene-protein-structure-function through an examination of modern technologies built on the concepts of genomics versus molecular biology, and proteomics versus biochemistry. Technologies to be examined include DNA sequencing, nucleic acid and protein microarrays, two-dimensional gel electrophoresis of proteins, uses of mass spectrometry for high throughput protein identification, isotope tagging for quantitative proteomics, high-performance liquid chromatography, high-throughput functional assays, affinity chromatography and modern methods for database analysis. Particular emphasis will be placed on how these technologies can provide insight into the molecular basis of changes in cellular function under both physiological and pathological conditions as well as how they can be applied to biotechnology for the discovery of biomarkers, diagnostics, and therapeutics. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in proteomics and genomics.
The lecture component of this unit of study is the same as BCHM3092. Qualified students will attend seminars/practical classes in which more sophisticated topics in proteomics and genomics will be covered.
The lecture component of this unit of study is the same as BCHM3092. Qualified students will attend seminars/practical classes in which more sophisticated topics in proteomics and genomics will be covered.
BIOL3018 Gene Technology and Genomics
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX) Prohibitions: BIOL3918 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the regulation, impact and implications of genetic engineering and genomics. Topics include biological sequence data and databases, comparative genomics, the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines, new diagnostic techniques for human and veterinary disease, and the genetic engineering of animals and plants. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and bioinformatics, immunological detection of proteins, and the genetic transformation and assay of plants.
BIOL3918 Gene Technology and Genomics (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX)] Prohibitions: BIOL3018 Assessment: One 2-hour exam (60%), assignments (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of BIOL3018 Gene Technology and Genomics. The content and nature of these components may vary from year to year.
GEGE3X04 to be developed for offering in 2019.