Master of Architectural Science (High Performance Buildings)

Unit outlines will be available through Find a unit outline two weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.
 

Errata
Item Errata Date
1.

DESC9014: Departmental permission is no longer required for this unit

07/02/2022
2.

DESC9015: Departmental permission is required for Camperdown Campus (CC) mode only.
Remote (RE) mode does not require Departmental Permission.

07/02/2022
3.

DESC9197: Departmental permission is required for Camperdown Campus (CC) mode only.
Remote (RE) mode does not require Departmental Permission.

07/02/2022

 

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

High Performance Buildings Stream

Master of Architectural Science (High Performance Buildings)

To qualify for a single stream, students must complete:
(a) 72 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 36 credit points Core Advanced units
(iii) maximum of 24 credit points elective units
(iv) minimum 6 credit points Capstone units
(b) Core units completed in excess of the minimum requirements may count as elective units.
To qualify for a double stream, students must complete:
(a) complete 96 credit points in two streams
(i) nominate which of the streams is primary, and meet the foundation core, advanced core and capstone requirements for that stream
(b) nominate which of the streams is secondary, and complete 24 credit points of core advanced units for that stream.
(iii) a unit that is common to the requirements of both streams may count towards the requirements for both streams, but may only count once in the total credit points for the degree.

Graduate Diploma in Architectural Science (High Performance Buildings)

Students must complete 48 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 36 credit points Core Advanced units
(iii) maximum of 6 credit points elective units.
(b) Core units completed in excess of the minimum requirements may count as elective units of study.

Graduate Certificate in Architectural Science (High Performance Buildings)

Students must complete 24 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 18 credit points Core Advanced units

Core Foundational units

DESC9200
Introduction to Architectural Science
6      Semester 1
Semester 2

Core Advanced units

DESC9014
Sustainable Construction Technology
6   
Note: Department permission required for enrolment

Semester 1
DESC9675
High Performance Facades
6      Semester 1
DESC9067
Mechanical Services
6      Semester 2
DESC9201
Indoor Environmental Quality (IEQ)
6      Semester 2
DESC9015
Building Energy Analysis
6   
Note: Department permission required for enrolment

Semester 1
DESC9195
Building Economics
6      Semester 2

Capstone (Master of Architectural Science only)

DESC9674
Building Information Management
6    P DESC9200 and DESC9014
Semester 1
DESC9673
Intelligent Building Control Systems
6      Semester 2

Electives

Electives may be chosen from the list below, or from any postgraduate units in the School of Architecture, Design and Planning, or, with the permission of the Associate Dean, from any other postgraduate course in the University subject to availability and permission from the relevant Unit of Study Coordinator.
DESC9194
Asset and Facility Management

This unit of study is not available in 2022

6      Semester 1
DESC9147
Sustainable Building Design Principles
6    A Fundamental knowledge of building design
Semester 1
DESC9148
Sustainable Building Design Practice
6    A Fundamental knowledge of sustainable design
P DESC9201
Semester 1
DESC9138
Architectural and Audio Acoustics
6      Semester 1
DESC9164
Lighting Technologies
6    N DESC9063
Semester 2
DESC9133
Architectural Acoustics Practice
6    A DESC9138
Semester 2
DESC9197
Energy Management and Code Compliance
6    A DESC9015

Note: Department permission required for enrolment

Semester 2
DESC9074
Project Management
6      Semester 2
DESC9169
Daylight in Buildings
6    N DESC9106
Semester 2
DESC9153
Graduate Internship
6   
Note: Department permission required for enrolment
Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
Intensive December
Intensive February
Intensive January
Intensive July
Intensive November
Semester 1
Semester 2

Research Electives

DESC9300 in combination with either a Report or Dissertation may replace the capstone with the permission of the Program Director.
DESC9300
Research in Arch. and Design Science
6    N ARCF9001

Note: Department permission required for enrolment

Semester 1
Semester 2
ARCH9045
Dissertation 1
12    P 48 credit points and a WAM of at least 75
C ARCH9046
N ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011

Note: Department permission required for enrolment

Semester 1
Semester 2
ARCH9046
Dissertation 2
12    C ARCH9045
Semester 1
Semester 2

High Performance Buildings Stream

Master of Architectural Science (High Performance Buildings)

To qualify for a single stream, students must complete:
(a) 72 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 36 credit points Core Advanced units
(iii) maximum of 24 credit points elective units
(iv) minimum 6 credit points Capstone units
(b) Core units completed in excess of the minimum requirements may count as elective units.
To qualify for a double stream, students must complete:
(a) complete 96 credit points in two streams
(i) nominate which of the streams is primary, and meet the foundation core, advanced core and capstone requirements for that stream
(b) nominate which of the streams is secondary, and complete 24 credit points of core advanced units for that stream.
(iii) a unit that is common to the requirements of both streams may count towards the requirements for both streams, but may only count once in the total credit points for the degree.

Graduate Diploma in Architectural Science (High Performance Buildings)

Students must complete 48 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 36 credit points Core Advanced units
(iii) maximum of 6 credit points elective units.
(b) Core units completed in excess of the minimum requirements may count as elective units of study.

Graduate Certificate in Architectural Science (High Performance Buildings)

Students must complete 24 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 18 credit points Core Advanced units

Core Foundational units

DESC9200 Introduction to Architectural Science

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit aims to explore the scientific concepts of architectural science (including heat, light and sound) from which foundational principles and methods applicable to buildings are developed. It is divided into different topics, including climate, thermal environment, lighting, and acoustics. Students will gain an understanding of the terminology, physical values and metrics in each of these topics, and how they apply to the design and function of buildings. Theoretical models to predict key physical values in buildings are presented and used in assessments. Learning is supported by hands-on measurement exercises. This unit has a focused pedagogy intended for all graduate students in Architectural Science. It is a common core unit for all of the programs (Audio and Acoustics, High Performance Buildings, Illumination Design and Sustainable Design). Students within these programs should undertake this unit in their first semester of study if possible.

Core Advanced units

DESC9014 Sustainable Construction Technology

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
This unit covers three related areas of investigation: basic building construction practices, advanced sustainable construction practices and environmental rating of building construction. It begins by introducing a number of recurrent themes in construction in Australia at the present time including the idea of building culture, the various modes of delivery and variety of classifications of buildings and building elements and rational construction. There follows a review of sustainable construction techniques of domestic scaled buildings using, where appropriate, examples of well documented and/or accessible exemplars. The second part of the unit reviews current approaches to sustainable building technologies employed in more complex public and commercial scaled buildings, particularly with regard to processes of structural system selection, facade systems design and construction and material performance. Aspects of the National Construction Code and integration of services into the building fabric relevant to building services engineers will also be reviewed. Finally the unit will review current issues related to environmental rating of building materials.
DESC9675 High Performance Facades

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit explores advanced building facades and their role in reducing environmental impacts while simultaneously enhancing indoor environment quality for building occupants. Advanced facades are those that are designed, analysed, procured and operated as a system. Optimisation of the often conflicting performance criteria of cooling load, lighting and daylighting, sound isolation, occupant comfort, costs and aesthetics requires an integrated approach from the whole team including architects, project managers, suppliers and engineers, from the earliest stages of the advanced facade design process. Specific topics to be covered in this unit include the integrated design approach to facades, the fundamental building physics determiningfacadeperformance, structural facade typologies, solar control facades, daylighting facades, double-skin facades, ventilated facades and dynamicfacadesystems. Variousanalyticalprocedures and simulation tools for the evaluation of high performancefacadedesigns will also be examined.Costs and benefits of various design approaches will also be assessed from both owner and occupant perspectives.
DESC9067 Mechanical Services

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit reviews the need for and application of Mechanical services in the built environment - in particular commercial buildings. Mechanical services are responsible for significant portion of energy and water consumption in buildings. Thus they have become important components of most modern building complexes, with a strong influence on other services and the architecture. This unit provides an introduction to these services by experienced presenters, including from the industry, for recent graduates or diplomats in mechanical engineering and an understanding of fundamental principles and practice for people from backgrounds other than mechanical engineering. Students will acquire skills in appreciation of impact of mechanical services on the environment, including recent mandatory regulations, together with estimating ventilation, cooling and heating requirements, design of simple ventilation, air conditioning and smoke hazard management systems, combined with an overview of water, refrigerant, ducted systems, with applicable equipment, energy, noise, human comfort, air quality criteria. Principles of heat transfer and fluid flow are applied to applications of mechanical ventilation, air conditioning and smoke hazard magagement, to satisfy regulations and standards, occupant and community expectations. The practical basis of the programme leads to a design assignment involving selecting equipment and systems to provide mechanical services in a building.
DESC9201 Indoor Environmental Quality (IEQ)

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Humans' thermal, visual, auditory and olfactory senses determine the perceived quality of a built environment. This unit analyses the built environments in context of these human factors. This unit relates human experience of buildings to the main dimensions of Indoor Environmental Quality (IEQ): thermal, acoustic, lighting and indoor pollution (also known as IAQ). This understanding of human comfort perceptions is contextualised by an understanding of the various approaches to the evaluation of built environmental performance. You will study indoor environment theories and predictive models, post-occupancy evaluation (POE) tools and workplace productivity metrics. Regulations from Australia and abroad will be explored to understand their impact on acoustics, thermal comfort, lighting, indoor air quality and ventilation. The unit also pays attention to IEQ criteria within sustainability rating tools since those protocols drive practitioners’ interest in and engagement with IEQ issues. This unit gives students extensive hands-on experience in laboratory- and/or field-based methods of IEQ research, assessment, and diagnostics. A recurring theme will be instrumental measurements of indoor environments, and how they can be analysed in relation to perceptual and behavioural data collected from occupants of those environments.
DESC9015 Building Energy Analysis

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
The aim of the unit is to acquaint students with the range of analytical and design tools available for low energy building design; to provide the opportunity for students to become proficient at using some of these tools. Among the techniques and tools explored are: climate data analysis; graphical and model techniques for solar studies; steady state and dynamic heat flow analysis; simplified methods for sizing passive solar elements; computer models of thermal performance; modelling ventilation; estimating energy consumption. Emphasis is given to tools which assist the design of the building fabric rather than building systems. At the end of the unit it is expected that students will: be aware of the importance of quantitative analysis in the design of low energy buildings; have an understanding of the theoretical basis of a range of analytical techniques; be familiar with the range of techniques available for building energy analysis; be able to apply many of these to design analysis; be familiar with the range of thermal analysis computer software available; and be able to use a software package to analyse the thermal performance of a typical small scale building. All of the assignments are designed to provide students with hands-on experience of each of the analysis tools.
DESC9195 Building Economics

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Investors associated with the property industry require at the outset Return On Investment (ROI) evaluations before committing capital. This unit of study examines the economic principles as they apply to buildings, from capital growth and life cycle management perspectives. The focus is on economic and financial practices required for high performing building assets, contract procurement strategies, cash flow analysis, return on investment for retro-fitting, and economic appraisals of existing or new building assets. This unit will develop an understanding of carbon accounting in relation to building management and its importance to sustainable built asset portfolios. The unit, taught by case studies, will equip students with an understanding of economic principles and professional tools necessary for the procurement and management of real estate property, facilities and buildings at optimum economic and environmental performance.

Capstone (Master of Architectural Science only)

DESC9674 Building Information Management

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: DESC9200 and DESC9014 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit will introduce students to the theory and practice of building information management and modelling. The unit starts with building management, which brings knowledge and skill on how to operate buildings to optimise performance. It also introduces Building Information Modelling (BIM), which is a digital representation of physical and functional characteristics of a facility. Building information models are shared knowledge resources about a facility, forming a reliable basis for decisions during its life-cycle from earliest conception to demolition. The unit explores the wider use of building information models not only in design but also in construction management, facility management, post construction evaluation, and retrofitting. By bringing together the building management and the information modelling, the unit responds to emergent requirements within the building sector for new tools and practices to offset the growing complexity in the design and construction of high performance buildings.
DESC9673 Intelligent Building Control Systems

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
The term 'intelligent buildings' was coined some thirty years ago with the advent of Direct Digital Controls (DDC), but only recently can buildings can truly be considered 'intelligent' thanks to advances in sensor technology, control systems theory, information technology, and electronics in general. This unit presents an overview of intelligent buildings from the Building Management and Control System (BMCS) perspective, focusing specifically on Heating Ventilation Air Conditioning (HVAC) processes, plus other building services including security, lighting, and vertical transportation. Fundamentals of control systems theory and technology will be presented. State-of-the-art BMCS capabilities will be demonstrated in relation to optimising the environmental, workplace productivity and economic performance of buildings. Sustainability issues covered by the unit include the role of BMCS in monitoring and managing energy and carbon footprint, water resources and indoor environmental quality (IEQ). The learning outcomes of this unit of study will include sufficient understanding of building controls to enable optimum building performance. It will also provide a platform for critical analysis of control and operational strategies adopted through techniques such as diagnostics and trend logging of parameters such as energy, water, temperature, humidity, to mention a few.

Electives

Electives may be chosen from the list below, or from any postgraduate units in the School of Architecture, Design and Planning, or, with the permission of the Associate Dean, from any other postgraduate course in the University subject to availability and permission from the relevant Unit of Study Coordinator.
DESC9194 Asset and Facility Management

This unit of study is not available in 2022

Credit points: 6 Teacher/Coordinator: Prof Richard De Dear Session: Semester 1 Classes: 5 weeks lectures/tutorials; 6 hours additional tutorials Assessment: three assignments (2x30%, 1x40%) Mode of delivery: Block mode
Property and physical infrastructure are essential elements of business operations and organisational functions. This unit of study will examine the key issues in built assets and facilities management (FM), and how they relate to strategic management within the context of high performance buildings. The unit will enable students to develop an understanding of strategic asset management, portfolio planning, benchmarking of operational services, mandatory code compliances, and business needs for high performing facilities. The functions of facilities management within built assets have a direct relationship with the organisation's performance within a constantly changing business environment. A technical understanding of built assets is a prerequisite to optimising business efficiency and future-proofing against market changes. The unit is taught using a case-study methodology with students working through actual industry projects, thus stimulating a broader appreciation of the FM work involved and encouraging students to work collaboratively and creatively towards practical solutions.
DESC9147 Sustainable Building Design Principles

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Fundamental knowledge of building design Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Many buildings claim to be sustainable, but what are the design principles that allow them to achieve this? This unit aims to develop a critical understanding in students of building design principles that reduce the impact of the built environment on energy and other resource flows. Students will gain an overview of technical strategies that reduce the environmental impact of buildings and develop an awareness of the benchmarks and metrics used to judge the implementation of environmental design principles. The unit pays particular attention to design principles that relate to the environmental performance of the building fabric and the thermal systems of buildings.
DESC9148 Sustainable Building Design Practice

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: DESC9201 Assumed knowledge: Fundamental knowledge of sustainable design Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Assessing building performance and integrating environmental building systems and construction forms the core of sustainable building design practice. This advanced unit explores the methods, workflows and regulatory frameworks to design best-practice sustainable buildings. It develops your ability to work as a sustainable building consultant. You will learn how to evaluate and critique the environmental performance of real-world projects and set targets and apply strategies to improve designs. The unit also reviews working methods for integrated design and will develop your ability to communicate environmental performance to other design team members.
DESC9138 Architectural and Audio Acoustics

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) evening
This unit introduces the fundamental concepts and issues of audio and architectural acoustics, with an emphasis on theory. The unit introduces topics such as: basic acoustical concepts, quantities and units; principles of sound radiation and propagation; sound absorption and room acoustics; psychological acoustics; noise measurement and specification; speech intelligibility; and principles and specification of airborne sound insulation. Acoustics theory involves mathematics, and this unit aims to provide knowledge and skills so that such theory can be applied, with the help of spreadsheets and computer programs. Teaching is supported by demonstrations and tutorials. By completing this unit students will be able to understand acoustical terminology, and perform calculations and analysis applicable to sound in the environment, in buildings, and in audio contexts. They will have the ability to critically assess claims of acoustical performance. This unit provides the theoretical foundation for advanced units in audio and acoustics.
DESC9164 Lighting Technologies

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: DESC9063 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit covers the technologies employed in generating, distributing, and controlling light in illuminated environments. Students learn the advantages and disadvantages of different hardware options for various lighting applications. A brief history of lighting technologies and the physical processes involved with electrically generating light are included in this unit. Practical characteristics of currently popular lamp types, as well as emerging lighting technologies, are presented. The effects of integral luminaires and other light fittings on the resulting illumination are covered, as are the electrical requirements of different lighting technologies. This unit also includes calculation techniques for predicting the illumination in spaces from lighting products. The selection, operation, and implications of lighting control options are discussed. The underlying principles and practical consequences of the different characteristics of various lighting technologies are emphasised to enable students to independently evaluate future innovations in lighting technologies.
DESC9133 Architectural Acoustics Practice

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: DESC9138 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) evening
This unit will cover a range of theoretical, practical and professional issues in architectural acoustics, including codes and standards pertaining to architectural acoustics; method and integrity of measurement; room acoustical measurement, modelling, simulation and criteria; sound absorption theory, measurement and specification; sound insulation theory, measurement and specification; design of spaces using acoustical criteria; and field assessment of acoustical problems in and around buildings. By the completion of this unit, students will acquire knowledge and experience in areas commonly dealt with by the acoustical consulting profession. They will gain an appreciation of current issues in architectural acoustics, possibly inspiring future research.
DESC9197 Energy Management and Code Compliance

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: DESC9015 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
Objectives of this unit are to give students an understanding of energy consumption issues in buildings against the backdrop of escalating energy and carbon emission reduction targets for the built environment. In order to meet these targets, new design and operational management techniques are needed, including energy auditing, retrofitting and energy efficiency optimisation techniques. This unit is primarily concerned with energy management in buildings and Code compliance in Australia. Various methods of assessing energy performance will be explored, with emphasis on energy simulation. Students will be given an opportunity to understand Australian standards and building energy rating schemes, and how to apply them to the design and operation of buildings.
DESC9074 Project Management

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Project Management is specific form of establishing, programming, and coordinating an activity having a specific start point and end point. This body of knowledge - as for example in the Project Management Book of Knowledge (PMBOK) - needs to be understood in general terms. Initially project managers must identify and define the services that are needed, (scope) and that their employers are willing to endorse. The activities requiring to be carried out need to be sorted and sequenced; the materials, labour and plant required need to be estimated and procured. Projects involve the management of information, and communications. This unit will develop the student's ability to ascertain and document the scope of a project, schedule a programme, and understand the difficulties in directing it. This unit approaches the profession of Project Management as a cooperative undertaking rather than adversarial: it promotes the adoption of soft-skills rather than that of forceful command and supervision.
DESC9169 Daylight in Buildings

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: DESC9106 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Daylight can be used in buildings to reduce the energy spent on electric lighting and create aesthetically appealing interiors. Design decisions that affect the success of daylighting in a building span every phase of the design process, from site selection to the application of interior finishes. This unit discusses the role of daylight in indoor illuminated environments. Calculations to predict the quantity and distribution of daylight in spaces and predict the effects of shading devices are covered. Students learn about the local and global variables that influence daylight availability, recognize the challenges and opportunities with daylight in interior spaces, and the appropriate use of daylighting technologies. Modelling tools (Radiance based) will be used in order to assess the efficacy of selected daylight strategies.
DESC9153 Graduate Internship

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Intensive December,Intensive February,Intensive January,Intensive July,Intensive November,Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
The aims of the internship are to provide a direct link between the academic core of the course and the disciplines and methods of practice; to enable candidates to experience aspects of practice and provide the opportunity for them to work in areas of the field outside their specific expertise; to enable candidates to observe, analyse and comment on the interaction between theoretical and practical issues of their Program as it is practiced, and to establish connections between practice and the development of relevant research programs. The internship is intended to provide the opportunity for students to work in various situations in their Program's area. A secondary intention is that students use the opportunities of placement to broaden their own experience beyond the limitations of their chosen discipline. Candidates must find a suitable professional placement. Permission to enrol is given after the proposed placement has been approved by the Program Director. The host organisation will nominate a supervisor for the student for the internship. The student must complete at least 120 hours of full or part-time experience, supervised by a practicing designer (or other professional depending upon the field). A log-book of each day's work, signed by the supervisor must be submitted on completion. A 2000-word report on the benefits of the internship must also be produced. At the end of the internship the student will: demonstrate that they have completed a program of work (through a log-book); present a report; analyse their experiences and compare these to the theoretical content of the units they have completed, and suggest appropriate research directions so as to improve the complementarity of theory to practice.

Research Electives

DESC9300 in combination with either a Report or Dissertation may replace the capstone with the permission of the Program Director.
DESC9300 Research in Arch. and Design Science

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: ARCF9001 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
This unit aims to prepare students for undertaking a research project in the various sub-disciplines of Architectural Science. It begins with the workshop-based discussion about how to identify ‘knowledge gap’ from which an interesting and significant research question can be formulated. It highlights principles of experimental design and methods of data collection and analysis. You will be working closely together with your individual supervisor to fully establish research questions, transform them into testable hypotheses, and develop reliable and valid research methods. Students will be given an opportunity to fully present their research ideas and plans in the form of written research proposal and oral presentation. Prior to the enrolment, students are expected to find and appoint their individual supervisor who’s research interest and expertise are closely aligned with that of the student. This unit in combination with other 12 credit point research unit (either Report or Dissertation) may replace the capstone with the permission of the Program Director.
ARCH9045 Dissertation 1

Credit points: 12 Teacher/Coordinator: Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 48 credit points and a WAM of at least 75 Corequisites: ARCH9046 Prohibitions: ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.
ARCH9046 Dissertation 2

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Refer to the unit of study outline https //www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Corequisites: ARCH9045 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.