University of Sydney Handbooks - 2020 Archive

Download full 2020 archivePage archived at: Tue, 27 Oct 2020

Unit of study table

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Master of Professional Engineering (Accelerated) (Electrical)

To qualify for the award of the Master of Professional Engineering (Accelerated) in this specialisation, a candidate must complete 96 credit points, including:
(a) 12 credit points of Core units as listed below
(b) ENGG5217 Practical Experience
(c) 24 credit points of Foundation units
(d) 36 credit points of Electrical Elective units
(e) 12 credit points of Management Elective units
(f) A minimum of 12 credit points of Project or Research Pathway units as detailed below
(g) Candidates undertaking the Research Pathway, replace 12 credit points of elective units with Research Pathway units

Core units

ENGG5202
Sustainable Design, Eng and Mgt
6    A General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics
Semester 1
ENGG5204
Engineering Professional Practice
6    A Competences and experience in engineering obtained during an accepted engineering degree
Semester 1
ENGG5217
Practical Experience
   N ENGP1000 OR ENGP2000 OR ENGP3000 OR ENGG4000 OR CHNG5205 OR AMME5010


Students should have completed one year of their MPE program before enrolling in this unit.
Intensive April
Intensive August
Intensive December
Intensive February
Intensive January
Intensive July
Intensive June
Intensive March
Intensive May
Intensive November
Intensive October
Intensive September

Foundation units

Candidates must complete 24 credit points from the following Foundation units of study. It is recommended that these be taken in the first year of study.
ELEC9104
Engineering Electromagnetics
6    A Differential calculus, integral calculus, vector integral calculus; electrical circuit theory and analysis using lumped elements; fundamental electromagnetic laws and their use in the calculation of static fields.
N ELEC5730
Semester 1
ELEC9203
Electricity Networks
6    A This unit of study assumes a competence in first year mathematics (in particular, the ability to work with complex numbers), in elementary circuit theory and in basic electromagnetics.
N ELEC3203 OR ELEC5732
Semester 1
ELEC9204
Power Electronics and Applications
6    A Differential equations, linear algebra, complex variables, analysis of linear circuits. Fourier theory applied to periodic and non-periodic signals. Software such as MATLAB to perform signal analysis and filter design. Familiarity with the use of basic laboratory equipment such as oscilloscope, function generator, power supply, etc.
P ELEC9704
N ELEC5733
Semester 1
ELEC9206
Electrical Energy Conversion Systems
6    A ELEC9203. Following concepts are assumed knowledge for this unit of study: familiarity with circuit theory, electronic devices, AC power, capacitors and inductors, and electric circuits such as three-phase circuits and circuits with switches, the use of basic laboratory equipment such as oscilloscope and power supply.
N ELEC5734
Semester 2
ELEC9304
Control
6    A Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, Physics; solution of linear differential equations, Matrix Theory, eigenvalues and eigenvectors; linear electrical circuits, ideal op-amps; continuous linear time-invariant systems and their time and frequency domain representations, Laplace transform, Fourier transform.
N ELEC5735
Semester 2
ELEC9305
Digital Signal Processing
6    A Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, continuous linear time-invariant systems and their time and frequency domain representations, Fourier transform, sampling of continuous time signals.
N ELEC5736
Semester 1
ELEC9404
Electronic Circuit Design
6    A A background in basic electronics and circuit theory is assumed.
N ELEC5737
Semester 1
ELEC9405
Communications Electronics and Photonics
6    A A background in basic electronics and circuit theory is assumed.
N ELEC5738
Semester 2
ELEC9505
Communications
6    A ELEC9302
N ELEC5739
Semester 1
ELEC9506
Data Communications and the Internet
6    N ELEC5740
Semester 2
ELEC9515
Digital Communication Systems
6    N ELEC5744
Semester 1
ELEC9607
Embedded Systems
6    A Logic operations, theorems and Boolean algebra, data representation, number operations (binary, hex, integers and floating point), combinational logic analysis and synthesis, sequential logic, registers, counters, bus systems, state machines, simple CAD tools for logic design, basic computer organisation, the CPU, peripheral devices, software organisation, machine language, assembly language, operating systems, data communications and computer networks.
N ELEC5741
Semester 1
ELEC9608
Computer Architecture
6    A ELEC9607. Knowledge of microprocessor systems (embedded systems architecture, design methodology, interfacing and programming) is required.
P ELEC9602. Knowledge of digital logic (logic operations, theorems and Boolean algebra, number systems, combinational logic analysis and synthesis, sequential logic, registers, counters, bus systems, state machines, design of a simple computer, and using hardware description languages such as VHDL or Verilog) is required.
N ELEC3608
Semester 2
ELEC9609
Internet Software Platforms
6    N ELEC5742
Semester 2
ELEC9610
E-Business Analysis and Design
6    A Basic knowledge of Database Management Systems
N ELEC5743 OR EBUS3003
Semester 1

Electrical Elective units

Candidates must complete 36 credit points from the following Electrical Elective units of study.
COMP5047
Pervasive Computing
6    A ELEC1601 AND (COMP2129 OR COMP2017). Background in programming and operating systems that is sufficient for the student to independently learn new programming tools from standard online technical materials.

Note: Department permission required for enrolment

Semester 2
COMP5416
Advanced Network Technologies
6    A ELEC3506 OR ELEC9506 OR ELEC5740 OR COMP5116
Semester 2
COMP5426
Parallel and Distributed Computing
6    A It is assumed that students will have experience with algorithms design and software development as covered in (COMP2017 or COMP9017) and COMP3027 (or equivalent UoS from different institutions).
Semester 1
ELEC5101
Antennas and Propagation
6      Semester 2
ELEC5203
Topics in Power Engineering
6    A ELEC3203 Power Engineering and ELEC3204 Power Electronics and Drives. Familiarity with basic mathematics and physics; competence with basic circuit theory and understanding of electricity grid equipment such as transformers, transmission lines and associated modeling; and fundamentals of power electronic technologies.
Semester 2
ELEC5204
Power Systems Analysis and Protection
6    A (ELEC3203 OR ELEC9203 OR ELEC5732) AND (ELEC3206 OR ELEC9206 OR ELEC5734). The unit assumes basic knowledge of circuits, familiarity with basic mathematics, competence with basic circuit theory and an understanding of three phase systems, transformers, transmission lines and associated modeling and operation of such equipment.
Semester 1
ELEC5205
High Voltage Engineering
6    A The following previous knowledge is assumed for this unit. Circuit analysis techniques, electricity networks, power system fundamentals.
P (ELEC3203 OR ELEC9203 OR ELEC5732) AND (ELEC3206 OR ELEC9206 OR ELEC5734)
Semester 2
ELEC5206
Sustainable Energy Systems
6    A Following concepts are assumed knowledge for this unit of study: familiarity with transformers, ac power, capacitors and inductors, electric circuits such as three-phase circuits and circuits with switches, and basic electronic circuit theory.
Semester 2
ELEC5207
Advanced Power Conversion Technologies
6    A ELEC3204
Semester 2
ELEC5208
Intelligent Electricity Networks
6    A Fundamentals of Electricity Networks, Control Systems and Telecommunications
Semester 1
ELEC5211
Power System Dynamics and Control
6    A The assumed knowledge for learning this UoS is a deep understanding on circuit analysis and its applications in power system steady state analysis.
P ELEC3203 OR ELEC9203 OR ELEC5732
Semester 1
ELEC5212
Power System Planning and Markets
6    A The assumed knowledge for learning this UoS is power system steady state analysis
P ELEC3203 or ELEC9203 OR ELEC5732
Semester 2
ELEC5304
Intelligent Visual Signal Understanding
6    A Mathematics (e.g. probability and linear algebra) and programming skills (e.g. Matlab/Java/Python/C++)
Semester 1
ELEC5305
Acoustics, Speech and Signal Processing
6    A (ELEC2302 OR ELEC9302) AND (ELEC3305 OR ELEC9305). Linear algebra, fundamental concepts of signals and systems as covered in ELEC2302/ELEC9302, fundamental concepts of digital signal processing as covered in ELEC3305/9305. It would be unwise to attempt this unit without the assumed knowledge- if you are not sure, please contact the instructor.
Semester 2
ELEC5306
Video Intelligence and Compression
6    A Basic understanding of digital signal processing (filtering, DFT) and programming skills (e.g. Matlab/Java/Python/C++)
Semester 1
ELEC5307
Advanced Signal Processing with Deep Learning
6    A Mathematics (e.g., probability and linear algebra) and programming skills (e.g. Matlab/Java/Python/C++)
Semester 2
ELEC5507
Error Control Coding
6    A Fundamental mathematics including probability theory and linear algebra. Basic knowledge on digital communications. Basic MATLAB programming skills is desired.
Semester 1
ELEC5508
Wireless Engineering
6    A Basic knowledge in probability and statistics, analog and digital communications, error probability calculation in communications channels, and telecommunications network.
Semester 2
ELEC5509
Mobile Networks
6    A ELEC3505 AND ELEC3506. Basically, students need to know the concepts of data communications and mobile communications, which could be gained in one the following units of study: ELEC3505 Communications, ELEC3506 Data Communications and the Internet, or similar units. If you are not sure, please contact the instructor.
Semester 1
ELEC5510
Satellite Communication Systems
6    A Knowledge of error probabilities, analog and digital modulation techniques and error performance evaluation studied in ELEC3505 Communications and ELEC4505 Digital Communication Systems, is assumed.
Semester 2
ELEC5511
Optical Communication Systems
6    A (ELEC3405 OR ELEC9405) AND (ELEC3505 OR ELEC9505). Basic knowledge of communications, electronics and photonics


-
Semester 1
ELEC5512
Optical Networks
6    A Knowledge of digital communications, wave propagation, and fundamental optics
Semester 2
ELEC5514
Networked Embedded Systems
6    A ELEC3305 AND ELEC3506 AND ELEC3607 AND ELEC5508
Semester 2
ELEC5516
Electrical and Optical Sensor Design
6    A Math Ext 1, fundamental concepts of signal and systems, fundamental electrical circuit theory and analysis
Semester 1
ELEC5517
Software Defined Networks
6    A ELEC3506 OR ELEC9506
Semester 2
ELEC5518
IoT for Critical Infrastructures
6      Semester 1
ELEC5616
Computer and Network Security
6    A A programming language, basic maths.
Semester 1
ELEC5618
Software Quality Engineering
6    A Writing programs with multiple functions or methods in multiple files; design of complex data structures and combination in non trivial algorithms; use of an integrated development environment; software version control systems.
Semester 1
ELEC5619
Object Oriented Application Frameworks
6    A Java programming, and some web development experience are essential. Databases strongly recommended
Semester 2
ELEC5620
Model Based Software Engineering
6    A A programming language, basic maths.
Semester 2
ELEC5622
Signals, Software and Health
6      Semester 2
ELEC5701
Technology Venture Creation
6    N ENGG5102
Semester 2

Management Elective units

Candidates must complete 12 credit points from the following Management Elective units of study.
ENGG5203
Quality Engineering and Management
6    A First degree in Engineering or a related discipline
Semester 2
ENGG5205
Professional Practice in Project Management
6   

This is a core unit for all Master of Professional Engineering students as well as all students pursuing Project Management studies (including Master of Project Management, Graduate Certificate in Project Management and Graduate Diploma in Project Management). No prerequisite or assumed knowledge.
Semester 1
Semester 2
ENGG5214
Management of Technology
6    A Sound competence in all aspects of engineering, and some understanding of issues of engineering management
Semester 2
ENGG5215
International Eng Strategy and Operations
6    A Sound competence in all aspects of engineering, and some understanding of issues of engineering management and globalisation
Semester 2
ENGG5216
Management of Engineering Innovation
6    A Sound competence in all aspects of engineering, and some understanding of issues of engineering management
Semester 1

Project units

All candidates are required to complete a minimum of 12 credit points of Project or Research units during the final year of study.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study are eligible for the Extended Capstone Project.
Extended Capstone Project candidates take Capstone Project units ELEC5020 and ELEC5022 (total 18 cp) in place of Capstone Project ELEC5021 and 6 cp of elective units.
ELEC5020
Capstone Project A
6    P 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study).
Semester 1
Semester 2
ELEC5021
Capstone Project B
6    C ELEC5020
N ELEC5022 OR ELEC5222 OR ELEC5223

Note: Department permission required for enrolment

Semester 1
Semester 2
ELEC5022
Capstone Project B Extended
12    P 24 credit points in the Master of Engineering and WAM >=70 or 96 credit points in the Master of Professional Engineering and WAM >=70 or 48cp from MPE(Accel) program and WAM >=70
N ELEC5021 OR ELEC5222 OR ELEC5223

Note: Department permission required for enrolment

Semester 1
Semester 2

Research pathway

Candidates achieving an average mark of 75% or higher over 48 credit points of units of study or equivalent are eligible for the Research Pathway.
Research pathway candidates take Dissertation units ELEC5222 and ELEC5223 (total 24 cp) in place of Capstone Project units and 12 cp of elective units.
ELEC5222
Dissertation A
12    N ELEC8901 or ENGG5223 or ENGG5222 or ELEC8902

Note: Department permission required for enrolment
In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
Semester 1
Semester 2
ELEC5223
Dissertation B
12    N ELEC8901 or ELEC8902 or ENGG5222 or ENGG5223

Note: Department permission required for enrolment
In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
Semester 1
Semester 2

Exchange units

With approval of the Program Director, up to 12 credit points of Exchange units may be taken in place of other units, towards the requirements of the degree.

For more information on degree program requirements visit CUSP (https://cusp.sydney.edu.au).