University of Sydney Handbooks - 2019 Archive

Download full 2019 archive Page archived at: Tue, 05 Nov 2019 02:36:06 +0000

Table 1: Molecular Biology and Genetics

Errata
Item Errata Date
1. Prerequisites have changed for the following units. They now read:

BCHM3071 Molecular Biology and Biochem-Genes Prerequisites: [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71 or MEDS2003)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)]

BCHM3971 Molecular Biology and Biochem-Genes (Adv) Prerequisites: [An average mark of 75 in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71 or MEDS2003)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)]
20/2/2019
2.

Prerequisites have changed for the following units. They now read:

BIOL3018 Gene Technology and Genomics Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX or MEDS2003)

BIOL3918 Gene Technology and Genomics (Adv) Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX or MEDS2003)]

20/2/2019

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Molecular Biology and Genetics

For a major in Molecular Biology and Genetics, the minimum requirement is 24 credit points from senior units of study listed below.
Junior units of study
BIOL1006
Life and Evolution
6    A HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February).
N BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996
Semester 1
BIOL1906
Life and Evolution (Advanced)
6    A 85 or above in HSC Biology or equivalent.
N BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996

Note: Department permission required for enrolment

Semester 1
BIOL1996
Life and Evolution (SSP)
6    A 90 or above in HSC Biology or equivalent
N BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998

Note: Department permission required for enrolment

Semester 1
BIOL1007
From Molecules to Ecosystems
6    A HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February).
N BIOL1907 or BIOL1997
Semester 2
BIOL1907
From Molecules to Ecosystems (Advanced)
6    A 85 or above in HSC Biology or equivalent
N BIOL1007 or BIOL1997

Note: Department permission required for enrolment

Semester 2
BIOL1997
From Molecules to Ecosystems (SSP)
6    A 90 or above in HSC Biology or equivalent
N BIOL1007 or BIOL1907

Note: Department permission required for enrolment

Semester 2
Intermediate units of study
BCMB2001
Biochemistry and Molecular Biology
6    P 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903)
N BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2901 or MEDS2003
Semester 1
BCMB2901
Biochemistry and Molecular Biology (Advanced)
6    P A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903)
N BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 or MEDS2003
Semester 1
BCMB2002
Proteins in Cells
6    P 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903)
N BCHM2071 or BCHM2971 or BCMB2902
Semester 2
BCMB2902
Proteins in Cells (Advanced)
6    P A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903)
N BCHM2071 or BCHM2971 or BCMB2002
Semester 2
GEGE2001
Genetics and Genomics
6    A Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression.
N GENE2002 or MBLG2972 or GEGE2901 or MBLG2072
Semester 1
Semester 2
GEGE2901
Genetics and Genomics (Advanced)
6    A Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression.
P Annual average mark of at least 70
N GENE2002 or MBLG2072 or GEGE2001 or MBLG2972
Semester 1
Semester 2
Senior units of study
BCHM3071
Molecular Biology and Biochemistry-Genes
6    P [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)]
N BCHM3971


BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
Semester 1
BCHM3971
Molecular Biology and Biochem-Genes (Adv)
6    P [An average mark of 75 in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)]
N BCHM3071


BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
Semester 1
BCHM3072
Human Molecular Cell Biology
6    P [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)]
N BCHM3972


BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
Semester 2
BCHM3972
Human Molecular Cell Biology (Advanced)
6    P [An average mark of 75 in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)]
N BCHM3072


BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
Semester 2
BIOL3018
Gene Technology and Genomics
6    P (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX)
N BIOL3918
Semester 1
BIOL3918
Gene Technology and Genomics (Adv)
6    P An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX)]
N BIOL3018
Semester 1
BIOL3026
Developmental Genetics
6    P (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX)
N BIOL3926
Semester 2
BIOL3926
Developmental Genetics (Advanced)
6    P An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX)]
N BIOL3929 or BIOL3026
Semester 2

Molecular Biology and Genetics

For a major in Molecular Biology and Genetics, the minimum requirement is 24 credit points from senior units of study listed below.
Junior units of study
BIOL1006 Life and Evolution

Credit points: 6 Teacher/Coordinator: Dr Matthew Pye, A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week; 11 x 3-hour lab classes; a field excursion Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Writing task (10%), laboratory report (20%), laboratory notebook (10%), during semester tests and quizzes (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1906 Life and Evolution (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Matthew Pye, A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week; 11 x 3-hour lab classes; a field excursion Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent. Assessment: Writing task (10%), project report (20%), laboratory notebook (10%), during semester tests and quizzes (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1996 Life and Evolution (SSP)

Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures as per BIOL1906; one 3-hour practical per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), practical reports (25%), seminar presentation (15%), lab note book (5%), prelaboratory quizzes (5%) Practical field work: null Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS
BIOL1007 From Molecules to Ecosystems

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative final exam (40%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Claudia Keitel Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative exam (40%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (40%), project report which includes written report and presentation (60%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be a synthetic biology project investigating genetically engineered organisms. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
Intermediate units of study
BCMB2001 Biochemistry and Molecular Biology

Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 1 Classes: Three lectures per week; one 4-hour practical and one 1-hour tutorial session per fortnight Prerequisites: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2901 or MEDS2003 Assessment: Assignments, skills-based assessment, quizzes, exam Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Then we will explore how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Our practicals, along with other guided and online learning sessions will introduce you to widely applied and cutting edge tools that are essential for modern biochemistry and molecular biology. By the end of this unit you will be equipped with foundational skills and knowledge to support your studies in the life and medical sciences.
Textbooks
Stryer Biochemistry 8th Edition ISBN-13:978-1-4641-2610-9
BCMB2901 Biochemistry and Molecular Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 1 Classes: Three lectures per week; one 4-hour practical and one 1-hour tutorial session per fortnight Prerequisites: A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 or MEDS2003 Assessment: Assignments, quiz, skills-based assessment, exam Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Then we will explore how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. The advanced laboratory component will provide students with an authentic research laboratory experience while in the theory component, current research topics will be presented in a problem-based format through dedicated advanced tutorial sessions. This material will be assessed by creative student-centered activities supported by eLearning platforms.
Textbooks
Stryer Biochemistry 8th Edition ISBN-13:978-1-4641-2610-9
BCMB2002 Proteins in Cells

Credit points: 6 Teacher/Coordinator: Dr Sandro Ataide Session: Semester 2 Classes: Two 1-hour lectures per week; one 4-hour practical/tutorial session per week Prerequisites: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2071 or BCHM2971 or BCMB2902 Assessment: Assignments, skills-based assessment, quiz, final exam Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
A single human cell contains billions of protein molecules that are constantly in motion. Why so many? What are they doing? And, how are they doing it? In simple terms, proteins define the function of and drive almost every process within cells. In this unit of study you will learn about the biochemistry of proteins in their natural environment - within cells - with a focus on eukaryotes including plant and other cell types. You will discover the dynamic interplay within and between proteins and other cellular components and how the physical properties of proteins dictate function. You will discover how proteins are compartmentalized, modified, folded, transported in and between cells, the mechanisms by which proteins regulate biological activities, interact and transport molecules across membranes, and how mutations in proteins can lead to pathological consequences. Our practicals, other guided and online learning sessions will introduce you to a wide range of currently utilised techniques for protein biochemistry ranging from protein visualization, quantification, purification and enzymatic activity, to in silico studies and cellular targeting experiments. By the end of this unit you will be equipped with foundational skills and knowledge to support your studies in the cellular and molecular biosciences.
Textbooks
Lehninger Principles of Biochemistry 7th edition (2016) David L. Nelson Michael M. Cox Macmillan (ISBN-10: 1-4641-2611-9; ISBN-13: 978-1-4641-2611-6)
BCMB2902 Proteins in Cells (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Sandro Ataide Session: Semester 2 Classes: Two 1-hour lectures per week; one 4-hour practical/tutorial session per week Prerequisites: A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903) Prohibitions: BCHM2071 or BCHM2971 or BCMB2002 Assessment: Assignment, skills-based assessment, quiz, exam Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
A single human cell contains billions of protein molecules that are constantly in motion. Why so many? What are they doing? And, how are they doing it? In simple terms, proteins define the function of and drive almost every process within cells. In this unit of study you will learn about the biochemistry of proteins in their natural environment - within cells - with a focus on eukaryotes including plant and other cell types. You will discover the dynamic interplay within and between proteins and other cellular components and how the physical properties of proteins dictate function. You will discover how proteins are compartmentalized, modified, folded, transported in and between cells, the mechanisms by which proteins regulate biological activities, interact and transport molecules across membranes, and how mutations in proteins can lead to pathological consequences. There will be a research-focused approach to the advanced practical component, including real and virtual extensions to key experiments. This approach will continue in the lecture series with several unique advanced lectures covering current research topics. You will further investigate a selected area of interest from these topics using original source material and present your findings through an oral presentation in dedicated advanced tutorials.
Textbooks
Lehninger Principles of Biochemistry 7th edition (2016) David L. Nelson Michael M. Cox Macmillan (ISBN-10: 1-4641-2611-9; ISBN-13: 978-1-4641-2611-6)
GEGE2001 Genetics and Genomics

Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 1,Semester 2 Classes: Two lectures; one 3-hour practical session; and one peer assisted study session on a weekly basis Prohibitions: GENE2002 or MBLG2972 or GEGE2901 or MBLG2072 Assumed knowledge: Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression. Assessment: Assignments, quizzes and presentation (50%), final exam (50%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution.
GEGE2901 Genetics and Genomics (Advanced)

Credit points: 6 Teacher/Coordinator: Prof Peter Sharp Session: Semester 1,Semester 2 Classes: Two lectures; one 3-hour practical session; and one peer assisted study session on a weekly basis Prerequisites: Annual average mark of at least 70 Prohibitions: GENE2002 or MBLG2072 or GEGE2001 or MBLG2972 Assumed knowledge: Mendellian genetics, mechanisms of evolution, molecular and chromosomal bases of inheritance, and gene regulation and expression. Assessment: Assignments, quizzes, presentation, final exam Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
The era of genomics has revolutionised our approach to biology. Recent breakthroughs in genetics and genomic technologies have led to improvements in human and animal health, in breeding and selection of economically important organisms and in the curation and care of wild species and complex ecosystems. In this unit, students will investigate/describe ways in which modern biology uses genetics and genomics to study life, from the unicellular through to complex multicellular organisms and their interactions in communities and ecosystems. This unit includes a solid foundation in classical Mendelian genetics and its extensions into quantitative and population genetics. It also examines how our ability to sequence whole genomes has changed our capacities and our understanding of biology. Links between DNA, phenotype and the performance of organisms and ecosystems will be highlighted. The unit will examine the profound insights that modern molecular techniques have enabled in the fields of developmental biology, gene regulation, population genetics and molecular evolution. The Advanced mode of Genetics and Genomics will provide you with challenge and a higher level of academic rigour. You will have the opportunity to plan and carry out a project that will develop your skills in contemporary genetics/molecular biology techniques and will provide you with a greater depth of disciplinary understanding. The Advanced mode will culminate in a written report and in an oral presentation where you will discuss a recent breakthrough that has been enabled by the use of modern genetics and genomics technologies. This is a unit for anyone wanting to better understand the how genetics has shaped the earth and how it will shape the future.
Textbooks
TBA
Senior units of study
BCHM3071 Molecular Biology and Biochemistry-Genes

Credit points: 6 Teacher/Coordinator: Dr Giselle Yeo Session: Semester 1 Classes: Two 1-hour lectures per week; two 3-hours practicals per fortnight Prerequisites: [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3971 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester practical work and assignments (30%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study is designed to provide a comprehensive coverage of the activity of genes in living organisms, with a focus on eukaryotic and particularly human systems. The lecture component covers the arrangement and structure of genes, how genes are expressed, promoter activity and enhancer action. This leads into discussions on the biochemical basis of differentiation of eukaryotic cells, the molecular basis of imprinting, epigenetics, and the role of RNA in gene expression. Additionally, the course discusses the effects of damage to the genome and mechanisms of DNA repair. The modern techniques for manipulating and analysing macromolecules such as DNA and proteins and their relevance to medical and biotechnological applications are discussed. Techniques such as the generation of gene knockout and transgenic mice are discussed as well as genomic methods of analysing gene expression patterns. Particular emphasis is placed on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of genes within the human genome. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology laboratories.
Textbooks
Lewin, B. Genes XI. 11th edition. Jones and Bartlett. 2014.
BCHM3971 Molecular Biology and Biochem-Genes (Adv)

Credit points: 6 Teacher/Coordinator: Dr Giselle Yeo Session: Semester 1 Classes: Two 1-hour lectures per week; two 3-hours practicals per fortnight Prerequisites: [An average mark of 75 in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3071 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester (practical work and assignments 30%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study is designed to provide a comprehensive coverage of the activity of genes in living organisms, with a focus on eukaryotic and particularly human systems. The lecture component covers the arrangement and structure of genes, how genes are expressed, promoter activity and enhancer action. This leads into discussions on the biochemical basis of differentiation of eukaryotic cells, the molecular basis of imprinting, epigenetics, and the role of RNA in gene expression. Additionally, the course discusses the effects of damage to the genome and mechanisms of DNA repair. The modern techniques for manipulating and analysing macromolecules such as DNA and proteins and their relevance to medical and biotechnological applications are discussed. Techniques such as the generation of gene knockout and transgenic mice are discussed as well as genomic methods of analysing gene expression patterns. Particular emphasis is placed on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of genes within the human genome. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology laboratories.
The lecture component of this unit of study is the same as BCHM3071. Qualified students will attend seminars/practical classes in which more sophisticated topics in gene expression and manipulation will be covered.
Textbooks
Lewin, B. Genes XI. 11th edition. Jones and Bartlett. 2014.
BCHM3072 Human Molecular Cell Biology

Credit points: 6 Teacher/Coordinator: Dr Markus Hofer Session: Semester 2 Classes: Two 1-hour lectures per week; two 3-hours practicals per fortnight Prerequisites: [12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and BMED2405 and 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3972 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester (practical work and assignments 30%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study will explore the responses of cells to changes in their environment in both health and disease. The lecture course consists of four integrated modules. The first will provide an overview of the role of signalling mechanisms in the control of human cell biology and then focus on cell surface receptors and the downstream signal transduction events that they initiate. The second will examine how cells detect and respond to pathogenic molecular patterns displayed by infectious agents and injured cells by discussing the roles of relevant cell surface receptors, cytokines and signal transduction pathways. The third and fourth will focus on the life, death and differentiation of human cells in response to intra-cellular and extra-cellular signals by discussing the eukaryotic cell cycle under normal and pathological circumstances and programmed cell death in response to abnormal extra-cellular and intra-cellular signals. In all modules emphasis will be placed on the molecular processes involved in human cell biology, how modern molecular and cell biology methods have led to our current understanding of them and the implications of them for pathologies such as cancer. The practical component is designed to complement the lecture course, providing students with experience in a wide range of techniques used in modern molecular cell biology.
Textbooks
Alberts, B. et al. Molecular Biology of the Cell. 6th edition. Garland Science. 2014.
BCHM3972 Human Molecular Cell Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Markus Hofer Session: Semester 2 Classes: Two 1-hour lectures per week; two 3-hours practicals per fortnight Prerequisites: [An average mark of 75 in 12cp from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCMB2X02 or MBLG2X71)] OR [BMED2401 and a mark of 75 or above in BMED2405 and a mark of 75 or above in 6cp from (BCHM2X71 or BCMB2X02 or MBLG2X71)] Prohibitions: BCHM3072 Assessment: One 2.5-hour exam (theory and theory of prac 70%), in-semester (practical work and assignments 30%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: BMedSc degree students: You must have successfully completed BMED2401 and an additional 12cp from BMED240X before enrolling in this unit.
This unit of study will explore the responses of cells to changes in their environment in both health and disease. The lecture course consists of four integrated modules. The first will provide an overview of the role of signalling mechanisms in the control of human cell biology and then focus on cell surface receptors and the downstream signal transduction events that they initiate. The second will examine how cells detect and respond to pathogenic molecular patterns displayed by infectious agents and injured cells by discussing the roles of relevant cell surface receptors, cytokines and signal transduction pathways. The third and fourth will focus on the life, death and differentiation of human cells in response to intra-cellular and extra-cellular signals by discussing the eukaryotic cell cycle under normal and pathological circumstances and programmed cell death in response to abnormal extra-cellular and intra-cellular signals. In all modules emphasis will be placed on the molecular processes involved in human cell biology, how modern molecular and cell biology methods have led to our current understanding of them and the implications of them for pathologies such as cancer. The practical component is designed to complement the lecture course, providing students with experience in a wide range of techniques used in modern molecular cell biology.
The lecture component of this unit of study is the same as BCHM3072. Qualified students will attend seminars/practical classes in which more sophisticated topics in modern molecular cell biology will be covered.
Textbooks
Alberts, B. et al. Molecular Biology of the Cell. 6th edition. Garland Science. 2014.
BIOL3018 Gene Technology and Genomics

Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX) Prohibitions: BIOL3918 Assessment: One 2-hour exam (60%), assignments (40%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the regulation, impact and implications of genetic engineering and genomics. Topics include biological sequence data and databases, comparative genomics, the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines, new diagnostic techniques for human and veterinary disease, and the genetic engineering of animals and plants. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and bioinformatics, immunological detection of proteins, and the genetic transformation and assay of plants.
BIOL3918 Gene Technology and Genomics (Adv)

Credit points: 6 Teacher/Coordinator: A/Prof Mary Byrne Session: Semester 1 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BCMB2XXX or QBIO2001 or IMMU2XXX or BIOL2XXX)] Prohibitions: BIOL3018 Assessment: One 2-hour exam (60%), assignments (40%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components of BIOL3018 Gene Technology and Genomics. The content and nature of these components may vary from year to year.
BIOL3026 Developmental Genetics

Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 2 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: (MBLG2X72 or GEGE2X01 or GENE2002) and 6cp from (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX) Prohibitions: BIOL3926 Assessment: One 2-hour exam, assignments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Developmental genetics discusses major concepts and our current understanding of developmental biology with an emphasis on molecular genetics. The developmental genetics of animal and plant systems will be investigated, along with approaches used to determine gene function in relation to development of complex multicellular organisms. Topics include the features and resources for model organisms; the generation of mutants for forward and reverse genetics; the application of mutants to the study gene function and gene networks; spatial and temporal gene expression in pattern formation; quantitative trait loci analysis; utility of genome wide association studies; epigenetics in relation to inheritance; genome information in the study of human genetics. Reference will be made to the use of modern techniques in developmental biology such as transgenics, recombinant DNA technology, tissue-specific expression analysis. Various methods of genetic mapping will be covered. Practical work complements the theoretical aspects of the course and develops important skills in genetics.
BIOL3926 Developmental Genetics (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 2 Classes: 24 1-hour lectures/tutorials per semester and up to 3 hours laboratory per week. Prerequisites: An average mark of 75 or above in [(MBLG2X72 or GEGE2X01 or GENE2002) and (MBLG2X71 or BIOL2XXX or BCMB2XXX or QBIO2001 or IMMU2XXX)] Prohibitions: BIOL3929 or BIOL3026 Assessment: One 2-hour exam, assignments (100%). Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Qualified students will participate in alternative components to BIOL3026 Developmental Genetics. The content and nature of these components may vary from year to year. Some assessment will be in an alternative format to components of BIOL3026.