Pharmacology
Errata
Item | Errata | Date |
---|---|---|
1. |
Prohibitions have changed for the following unit. They now read: PCOL3022 Neuropharmacology N: PCOL3922 |
18/102019 |
PHARMACOLOGY
Advanced coursework and projects will be available in 2020 for students who complete this major.
Pharmacology major
A major in Pharmacology requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level core units
(iii) 6 credit points of 2000-level units according to the following:
(a) 6 credit points of 2000-level PCOL coded units or
(b) 6 credit points of 2000-level MEDS coded pharmacology units for students in the Medical Science stream
(iii) 18 credit points of 3000-level major core units
(iv) 6 credit points of 3000-level interdisciplinary project units
Pharmacology minor
A minor in Pharmacology requires 36 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level core units
(iii) 6 credit points of 2000-level units according to the following:
(a) 6 credit points of 2000-level PCOL coded units or
(b) 6 credit points of 2000-level MEDS coded pharmacology units for students in the Medical Science stream
(iii) 12 credit points of 3000-level minor selective units
Units of study
The units of study are listed below.
1000-level units of study
Core
BIOL1007 From Molecules to Ecosystems
Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Claudia Keitel Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)
Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (40%), project report which includes written report and presentation (60%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be a synthetic biology project investigating genetically engineered organisms. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
CHEM1011 Fundamentals of Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February). Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1111 Chemistry 1A
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1,Semester 2,Summer Main Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures and 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)
Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3hr practical per week for 12 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, presentations, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
2000-level units of study
Core
PCOL2022 Drugs in Contemporary Society
Credit points: 6 Teacher/Coordinator: Dr Hilary Lloyd Session: Semester 2 Classes: Online mini-lectures, webinars, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry-, multimedia module- and data analysis-based workshops (5 hours per week for 13 weeks). Prerequisites: [(BIOL1XX7 or MBLG1XX1) or (MEDS1X01 or BIOL1XX8 or BIOL1XX3) and (CHEM1XX1 or CHEM1903) Prohibitions: PCOL2555 or PCOL2012 Assumed knowledge: PCOL2021 Assessment: Online quizzes (10%), oral presentation (10%), practical exercises (20%), written research topics (10%), online discussion posts (10%), Final Exam (problem-based) (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
The prevention, control and treatment of many diseases and conditions remain major challenges within contemporary society. These challenges provide unique opportunities for pharmacologists to discover novel molecular targets for drug action. In this unit of study you will examine six major conditions that affect a range of body systems where improvements in treatment using pharmacotherapies are needed. In learning about unresolved issues, you will also evaluate the complexities of pharmacological treatment, including: ethical considerations, strength of evidence of drug efficacy, as well as safety and tolerability aspects of drug use. Using the tools of pharmacological enquiry you will further your practical and cognitive skills through laboratory- and problem-based enquiry. In both face-to-face and online learning environments you will explore a range of pharmacotherapeutic options currently available and will have the opportunity to research and apply your knowledge and understanding to unresolved health-related problems. By undertaking this unit you will develop your disciplinary expertise in pharmacology and further your skills in critical thinking, problem solving, communication, digital literacy, teamwork and interdisciplinary effectiveness.
Textbooks
All resources will be made available through the Canvas LMS UoS site. Links to other learning technologies will be available via Canvas LMS. Textbooks will be available for purchase from Co-op bookshop, in hard copy and online via the library.
PCOL coded
PCOL2021 Key Concepts in Pharmacology
Credit points: 6 Teacher/Coordinator: Dr Brent McParland Session: Semester 1 Classes: Online mini-lectures, webinars, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry-, multimedia module- and data analysis-based workshops (5 hours per week for 13 weeks). Prerequisites: CHEM1XX1 or CHEM1903 Prohibitions: PCOL2555 or PCOL2011 or MEDS2002 or BMED2401 or BMED2801 or BMED2802 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 or MEDS2002 Assumed knowledge: [(BIOL1XX7 or MBLG1XX1) or (MEDS1X01 or BIOL1XX8 or BIOL1XX3) Assessment: Cognitive, problem-based examination (40%), poster presentation (10%), practical exercises (20%), written research topics (10%), online quizzes (10%), and contribution to online discussion (10%). Mode of delivery: Normal (lecture/lab/tutorial) day
Pharmacology is the study of the properties and biological actions of drugs and chemicals and the keys role they play in the prevention and treatment of human diseases. In this unit of study you will be introduced to the fundamental concepts in pharmacology: a) principles of drug action, b) pharmacokinetics and precision medicine, c) drug design, and d) drug development and regulation. Additionally, you will learn the tools pharmacologists use in their investigations and develop skills in laboratory and problem-based enquiry. In both face-to-face and online learning environments you will learn the core concepts underpinning pharmacology and will have the opportunity to explore and apply these concepts through practicals, computer-aided learning and problem-based workshops. By undertaking this unit you will not only learn to view health and disease through the lens of a pharmacologist, you will further develop valuable skills in critical thinking and problem solving, communication, digital literacy, teamwork and interdisciplinary effectiveness. This unit will help you to develop a coherent and connected knowledge of the medical sciences and their broad applications, while also giving you the foundations for increasing your disciplinary expertise in pharmacology.
Textbooks
All resources will be made available through the Canvas LMS UoS site. Links to other learning technologies will be available via Canvas LMS. Textbooks will be available for purchase from Co-op bookshop, in hard copy and online via the library.
MEDS coded pharmacology
MEDS2002 Key Concepts in Pharmacology
Credit points: 6 Teacher/Coordinator: Dr Brent McParland Session: Semester 1 Classes: Online mini-lectures, webinars, discussion forums and self-directed learning activities; Face-to-face seminars, practicals, enquiry-, multimedia module- and data analysis-based workshops (5 hours per week for 13 weeks). Prerequisites: CHEM1XX1 or CHEM1903 Prohibitions: PCOL2555 or PCOL2011 or PCOL2021 or BMED2401 or BMED2801 or BMED2802 or BMED2804 or BMED2805 or BMED2806 or BMED2807 or BMED2808 Assumed knowledge: [(BIOL1XX7 or MBLG1XX1) or (MEDS1X01 or BIOL1XX8 or BIOL1XX3) Assessment: Cognitive, problem-based examination (40%), poster presentation (10%), practical exercises and peer evaluation (20%), online quizzes (10%), personal reflection (5%), contribution to online discussion (5%), integrated assessment (10%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: This unit must be taken by all students enrolled in the BSc (Medical Science)
Pharmacology is the study of the properties and biological actions of drugs and chemicals and the keys role they play in the prevention and treatment of human diseases. In this unit of study you will be introduced to the fundamental concepts in pharmacology: a) principles of drug action, b) pharmacokinetics and precision medicine, c) drug design, and d) drug development and regulation. Additionally, you will learn the tools pharmacologists use in their investigations and develop skills in laboratory and problem-based enquiry. In both face-to-face and online learning environments you will learn the core concepts underpinning pharmacology and will have the opportunity to explore and apply these concepts through practicals, computer-aided learning and problem-based workshops. By undertaking this unit you will not only learn to view health and disease through the lens of a pharmacologist, you will further develop valuable skills in critical thinking and problem solving, communication, digital literacy, teamwork and interdisciplinary effectiveness. This unit will help you to develop a coherent and connected knowledge of the medical sciences and their broad applications, while also giving you the foundations for increasing your disciplinary expertise in pharmacology.
Textbooks
All resources will be made available through the Canvas LMS UoS site. Links to other learning technologies will be available via Canvas LMS. Textbooks will be available for purchase from Co-op bookshop, in hard copy and online via the library.
(MEDS coded units of study are only available to students in the Medical Science stream).
3000-level units of study
Major core
PCOL3011 Toxicology
Credit points: 6 Teacher/Coordinator: Dr Slade Matthews Session: Semester 1 Classes: Two 1 hour lectures per week and one 3 hour tutorial/practical every 2 weeks and two practical sessions each 3 hours in length. Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2405) Prohibitions: PCOL3911 Assessment: One 2 hour exam, tutorial presentations, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study is designed to introduce students with a basic understanding of pharmacology to the discipline of toxicology. The study of toxicology is central to the assessment of drug safety in drug development and in the explanation of toxicology associated with registered drugs (adverse drug reactions) and drug-drug interactions. These issues as well as the pharmacogenetic basis of adverse reactions will be considered. Environmental toxicology, particularly toxic reactions to environmental agents such as asbestos and pesticides, and target organ toxicology (lung, liver, CNS) are also covered. The diverse world of plants and animal toxins will also be explored. As a final consequence of exposure to many toxicants, the biology and causes of cancer are discussed. As part of the unit students are introduced to basic ideas about the collection and analysis of data from human and animal populations, both in the structured situation of clinical trials, forensic problems and in analysis of epidemiological data.
Textbooks
Klaasen, Curtis D. Casarett and Doull's Essentials of Toxicology 2 ed. McGraw Hill. 2010, or, by the same authors: Toxicology: The Basic Science of Poisons. 7 ed. McGraw Hill. 2008.
PCOL3911 Toxicology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Slade Matthews Session: Semester 1 Classes: Two 1 hour lectures per week and one 3 hour tutorial/practical every second week. and two practical sessions each 3 hours in length Prerequisites: a mark of 70 or above in [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2405)] Prohibitions: PCOL3011 Assessment: One 2 hour exam, tutorial presentations, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will consist of the lecture and practical components of PCOL3011. Students will be set special advanced assignments and additional practical data management activities related to the material covered in lectures and practical work. These may also involve advanced practical work or detailed investigation of a theoretical problem.
Textbooks
Klaasen, Curtis D. Casarett and Doull's Essentials of Toxicology 3rd ed. McGraw Hill. 2015.. or, by the same authors: Toxicology: The Basic Science of Poisons. 8th ed. McGraw Hill. 2013.
PCOL3012 Drug Design and Development
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX Prohibitions: PCOL3912 Assessment: One 2 hour exam, class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study is designed to introduce students with a basic understanding of pharmacology to the field of medicinal chemistry associated with drug design and development. The course covers the fundamental aspects of drug discovery and development with reference to the essentials of chemistry and illustrates drug development with examples that include neuraminidase inhibitors and angiotensin converting enzyme inhibitors. The role of computers in drug design is emphasised by classwork and assignments on molecular modelling and structure-activity relationships. The course also extends to a section on the design of diverse pharmacological agents which include compounds for imaging by positron emission tomography (PET), and kinase inhibitors.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.
PCOL3912 Drug Design and Development (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: a mark of 70 or above in {(PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX} Prohibitions: PCOL3012 Assessment: One 2 hour exam, in class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will consist of the lecture and practical components of PCOL3012. Students will be set special advanced assignments related to the material covered in core areas. These may also involve advanced practical work or detailed investigation of a theoretical problem.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.
PCOL3022 Neuropharmacology
Credit points: 6 Teacher/Coordinator: A/Prof Jonathon Arnold Session: Semester 2 Classes: Two 1 hour lectures per week, five 1 hour tutorials, three 3 hour practicals, elective project (equivalent to three 4 hour practicals). Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402 and BMED2405) or (ANAT2010 or ANAT2910) or (PSYC2010 or PSYC2910 or PSYC2015) Prohibitions: PCOL3921 Assessment: One 2 hour theory exam, tutorial presentation, practical report, lecture quizzes and elective project (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study builds on pharmacological knowledge acquired in the 2000 level pharmacology units of study with a major emphasis on gaining an understanding of neuropharmacology. The neuropharmacology of the major neurotransmitters and their role in neuropsychiatric diseases is explored together with the treatment of conditions such as Alzheimer's disease, movement disorders, stroke, depression, anxiety, epilepsy, pain and schizophrenia. Each student will conduct a capstone elective project (laboratory or literature-based) in applied pharmacology supervised by academic members of the department.
Textbooks
Nestler, EJ, Hyman, SE Holtzman, DM and Malenka, RC. Molecular Neuropharmacology: A Foundations for Clinical Neuroscience, 3rd ed. McGraw Hill, 2015.
PCOL3922 Neuropharmacology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Jonathon Arnold Session: Semester 2 Classes: Two 1 hour lectures per week, five 1 hour tutorials, three 3 hour practicals, elective project (equivalent to three 4 hour practicals). Prerequisites: A mark of 70 or above in [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402 and BMED2405) or (ANAT2010 or ANAT2910) or (PSYC2010 or PSYC2910 or PSYC2015)] Prohibitions: PCOL3022 Assessment: One 2 hour theory exam, tutorial presentation, practical report, lecture quizzes and elective project (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study builds on pharmacological knowledge acquired in the 2000 level pharmacology units of study with a major emphasis on gaining an understanding of neuropharmacology. The neuropharmacology of the major neurotransmitters and their role in neuropsychiatric diseases is explored together with the treatment of conditions such as Alzheimer's disease, movement disorders, stroke, depression, anxiety, epilepsy, pain and schizophrenia. Each student will conduct a capstone elective project (laboratory or literature-based) in applied pharmacology supervised by academic members of the department.
Textbooks
Nestler, EJ, Hyman, SE, Holtzman, DM and Malenka, RC. Molecular Neuropharmacology: A Foundations for Clinical Neuroscience, 3rd ed. McGraw Hill, 2015.
Interdisciplinary Projects
PCOL3888 Pharmacology Interdisciplinary Project
Credit points: 6 Teacher/Coordinator: A/Prof Tina Hinton Session: Semester 2 Classes: 2hrs lectures and 3hrs workshop/group work per week Prerequisites: {(PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 12cp from (BMED2402 or BMED2403 or BMED2405 or BMED2406)]} and PCOL2022 Assessment: Assignments and written exam (50%), Project report (20%), Project oral presentation (10%), Team work participation and evaluation (20%). Mode of delivery: Block mode
Note: Department permission required for enrolment
Our ever-changing world requires knowledge that extends across multiple disciplines. The ability to identify and explore interdisciplinary links is a crucial skill for emerging professionals and researchers alike. This unit presents the opportunity to bring together the concepts and skills you have learnt in your discipline and apply them to a real-world problem. For example, you will work on a project dealing with the big complexities and controversies in pharmacology. In this unit, you will continue to understand and explore disciplinary knowledge, while also meeting and collaborating with students from across the University through project-based learning; identifying and solving problems, collecting and analysing data and communicating your findings to a diverse audience. All of these skills are highly valued by employers. This unit will foster the ability to work in interdisciplinary teams, and this is essential for both professional and research pathways in future.
SCPU3001 Science Interdisciplinary Project
Credit points: 6 Teacher/Coordinator: Pauline Ross Session: Intensive December,Intensive February,Intensive January,Intensive July,Semester 1,Semester 2 Classes: The unit consists of one seminar/workshop per week with accompanying online materials and a project to be determined in consultation with the partner organisation and completed as part of team with academic supervision. Prerequisites: Completion of 2000-level units required for at least one Science major. Assessment: group plan, group presentation, reflective journal, group project Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed for students who are concurrently enrolled in at least one 3000-level Science Table A unit of study to undertake a project that allows them to work with one of the University's industry and community partners. Students will work in teams on a real-world problem provided by the partner. This experience will allow students to apply their academic skills and disciplinary knowledge to a real-world issue in an authentic and meaningful way. Participation in this unit will require students to submit an application to the Faculty of Science.
Minor selective
PCOL3011 Toxicology
Credit points: 6 Teacher/Coordinator: Dr Slade Matthews Session: Semester 1 Classes: Two 1 hour lectures per week and one 3 hour tutorial/practical every 2 weeks and two practical sessions each 3 hours in length. Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2405) Prohibitions: PCOL3911 Assessment: One 2 hour exam, tutorial presentations, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study is designed to introduce students with a basic understanding of pharmacology to the discipline of toxicology. The study of toxicology is central to the assessment of drug safety in drug development and in the explanation of toxicology associated with registered drugs (adverse drug reactions) and drug-drug interactions. These issues as well as the pharmacogenetic basis of adverse reactions will be considered. Environmental toxicology, particularly toxic reactions to environmental agents such as asbestos and pesticides, and target organ toxicology (lung, liver, CNS) are also covered. The diverse world of plants and animal toxins will also be explored. As a final consequence of exposure to many toxicants, the biology and causes of cancer are discussed. As part of the unit students are introduced to basic ideas about the collection and analysis of data from human and animal populations, both in the structured situation of clinical trials, forensic problems and in analysis of epidemiological data.
Textbooks
Klaasen, Curtis D. Casarett and Doull's Essentials of Toxicology 2 ed. McGraw Hill. 2010, or, by the same authors: Toxicology: The Basic Science of Poisons. 7 ed. McGraw Hill. 2008.
PCOL3911 Toxicology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Slade Matthews Session: Semester 1 Classes: Two 1 hour lectures per week and one 3 hour tutorial/practical every second week. and two practical sessions each 3 hours in length Prerequisites: a mark of 70 or above in [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2405)] Prohibitions: PCOL3011 Assessment: One 2 hour exam, tutorial presentations, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will consist of the lecture and practical components of PCOL3011. Students will be set special advanced assignments and additional practical data management activities related to the material covered in lectures and practical work. These may also involve advanced practical work or detailed investigation of a theoretical problem.
Textbooks
Klaasen, Curtis D. Casarett and Doull's Essentials of Toxicology 3rd ed. McGraw Hill. 2015.. or, by the same authors: Toxicology: The Basic Science of Poisons. 8th ed. McGraw Hill. 2013.
PCOL3012 Drug Design and Development
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX Prohibitions: PCOL3912 Assessment: One 2 hour exam, class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study is designed to introduce students with a basic understanding of pharmacology to the field of medicinal chemistry associated with drug design and development. The course covers the fundamental aspects of drug discovery and development with reference to the essentials of chemistry and illustrates drug development with examples that include neuraminidase inhibitors and angiotensin converting enzyme inhibitors. The role of computers in drug design is emphasised by classwork and assignments on molecular modelling and structure-activity relationships. The course also extends to a section on the design of diverse pharmacological agents which include compounds for imaging by positron emission tomography (PET), and kinase inhibitors.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.
PCOL3912 Drug Design and Development (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof. Rachel Codd Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week. Prerequisites: a mark of 70 or above in {(PCOL2011 or PCOL2021 or MEDS2002) or [BMED2401 and 6cp from (BMED2402 or BMED2405)] or 12cp from BCMB2XXX} Prohibitions: PCOL3012 Assessment: One 2 hour exam, in class and online quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will consist of the lecture and practical components of PCOL3012. Students will be set special advanced assignments related to the material covered in core areas. These may also involve advanced practical work or detailed investigation of a theoretical problem.
Textbooks
Patrick, Graham L. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press. 2013.
PCOL3022 Neuropharmacology
Credit points: 6 Teacher/Coordinator: A/Prof Jonathon Arnold Session: Semester 2 Classes: Two 1 hour lectures per week, five 1 hour tutorials, three 3 hour practicals, elective project (equivalent to three 4 hour practicals). Prerequisites: (PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402 and BMED2405) or (ANAT2010 or ANAT2910) or (PSYC2010 or PSYC2910 or PSYC2015) Prohibitions: PCOL3921 Assessment: One 2 hour theory exam, tutorial presentation, practical report, lecture quizzes and elective project (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study builds on pharmacological knowledge acquired in the 2000 level pharmacology units of study with a major emphasis on gaining an understanding of neuropharmacology. The neuropharmacology of the major neurotransmitters and their role in neuropsychiatric diseases is explored together with the treatment of conditions such as Alzheimer's disease, movement disorders, stroke, depression, anxiety, epilepsy, pain and schizophrenia. Each student will conduct a capstone elective project (laboratory or literature-based) in applied pharmacology supervised by academic members of the department.
Textbooks
Nestler, EJ, Hyman, SE Holtzman, DM and Malenka, RC. Molecular Neuropharmacology: A Foundations for Clinical Neuroscience, 3rd ed. McGraw Hill, 2015.
PCOL3922 Neuropharmacology (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Jonathon Arnold Session: Semester 2 Classes: Two 1 hour lectures per week, five 1 hour tutorials, three 3 hour practicals, elective project (equivalent to three 4 hour practicals). Prerequisites: A mark of 70 or above in [(PCOL2011 or PCOL2021 or MEDS2002) or (BMED2401 and BMED2402 and BMED2405) or (ANAT2010 or ANAT2910) or (PSYC2010 or PSYC2910 or PSYC2015)] Prohibitions: PCOL3022 Assessment: One 2 hour theory exam, tutorial presentation, practical report, lecture quizzes and elective project (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study builds on pharmacological knowledge acquired in the 2000 level pharmacology units of study with a major emphasis on gaining an understanding of neuropharmacology. The neuropharmacology of the major neurotransmitters and their role in neuropsychiatric diseases is explored together with the treatment of conditions such as Alzheimer's disease, movement disorders, stroke, depression, anxiety, epilepsy, pain and schizophrenia. Each student will conduct a capstone elective project (laboratory or literature-based) in applied pharmacology supervised by academic members of the department.
Textbooks
Nestler, EJ, Hyman, SE, Holtzman, DM and Malenka, RC. Molecular Neuropharmacology: A Foundations for Clinical Neuroscience, 3rd ed. McGraw Hill, 2015.