University of Sydney Handbooks - 2019 Archive

Download full 2019 archive Page archived at: Tue, 05 Nov 2019 02:36:06 +0000

Soil Sscience and Hydrology Descriptions

SOIL SCIENCE AND HYDROLOGY

Advanced coursework and projects will be available in 2020 for students who complete this major.

Soil Science and Hydrology major

A major in Soil Science and Hydrology requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units
(iii) 12 credit points of 3000-level major core units
(iv) 6 credit points of core interdisciplinary project units
(v) 6 credit points of 3000-level major selective or interdisciplinary project selective units

Soil Science and Hydrology minor

A minor in Soil Science and Hydrology requires 36 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units
(iii) 6 credit points of 3000-level minor core units
(iv) 6 credit points of core interdisciplinary project units

Units of study

The units of study are listed below.

1000-level units of study

Core
BIOL1007 From Molecules to Ecosystems

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Claudia Keitel Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (40%), project report which includes written report and presentation (60%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be a synthetic biology project investigating genetically engineered organisms. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
BIOL1006 Life and Evolution

Credit points: 6 Teacher/Coordinator: Dr Matthew Pye, A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week; 11 x 3-hour lab classes; a field excursion Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Writing task (10%), laboratory report (20%), laboratory notebook (10%), during semester tests and quizzes (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1906 Life and Evolution (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Matthew Pye, A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week; 11 x 3-hour lab classes; a field excursion Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent. Assessment: Writing task (10%), project report (20%), laboratory notebook (10%), during semester tests and quizzes (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1996 Life and Evolution (SSP)

Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures as per BIOL1906; one 3-hour practical per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), practical reports (25%), seminar presentation (15%), lab note book (5%), prelaboratory quizzes (5%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS

2000-level units of study

Core
GEOS2116 Earth Surface Processes

Credit points: 6 Teacher/Coordinator: Dr Dan Penny Session: Semester 2 Classes: 2x1-hr lectures; 1x3-hr practical (lab/computer) sessions each week Prohibitions: GEOS2916 or GEOG2321 Assessment: practical and field assignments, final exam Practical field work: 3-5 day field trip Mode of delivery: Normal (lecture/lab/tutorial) day
The surface of the planet on which you live is the product of a balance between tectonic forces and numerous agents of erosion. The landscapes in which you live and work, and from which you draw resources, are therefore the legacy of many processes operating synchronously over long time periods. It is also true that Earth's landscapes are dynamic, and constantly changing around you in response to climate, tectonics and patterns of life. The sustainable management of landscapes is strongly dependent upon an awareness of those processes and the ways that they constrain human-environment interactions. In Earth Surface Processes, you will learn how landscapes are produced, and what this means for contemporary land use. Lectures by experts in physical geography, geology, soil science and environmental science will introduce you to the planetary and regional-scale controls on landforms and landscape dynamics, and the nature and distribution of major Australian landscape types. Focussed around 'hands on' field and laboratory-based tasks, students will gain essential practical, analytical and interpretive skills in the analysis of landscapes and earth surface processes that shape them. This is a unit for anyone wanting to better understand the planet on which they live.
Textbooks
Allen, P.A., 2009. Earth surface processes. John Wiley and Sons. Scitech, 551.3 72 Sharma, V.K., 2010. Introduction to process geomorphology. CRC Press. Scitech, 551.41 113
GEOS2916 Earth Surface Processes (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Dan Penny Session: Semester 2 Classes: 2x1-hr lectures; 1x3-hr practical (lab/computer) sessions each week Prerequisites: Annual average mark of at least 70 Prohibitions: GEOS2116 or GEOG2321 Assessment: practical and research assignments, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
The surface of the planet on which you live is the product of a balance between tectonic forces and numerous agents of erosion. The landscapes in which you live and work, and from which you draw resources, are therefore the legacy of many processes operating synchronously over long time periods. It is also true that Earth's landscapes are dynamic, and constantly changing around you in response to climate, tectonics and patterns of life. The sustainable management of landscapes is strongly dependent upon an awareness of those processes and the ways that they constrain human-environment interactions. In the Advanced mode of Earth Surface Processes, you will learn how landscapes are produced, and what this means for contemporary land use. Lectures by experts in physical geography, geology, soil science and environmental science will introduce you to the planetary and regional-scale controls on landforms and landscape dynamics, and the nature and distribution of major Australian landscape types. Focussed around 'hands on' field and laboratory-based tasks, students will gain essential practical, analytical and interpretive skills in the analysis of landscapes and earth surface processes that shape them. The Advanced mode of Earth Surface Processes challenges you to create new knowledge, and provides a higher level of academic rigour. You will take part in a series of small-group practical exercises that will develop your skills in research design and execution, and will provide you with a greater depth of understanding in core aspects of geomorphology. The Advanced mode will culminate in a research-focussed Advanced Assignment. This is a unit for anyone wanting to better understand the planet on which they live, and who may wish to develop higher-level analytical and research skills in geomorphology and landscape analysis.
Textbooks
Allen, P.A., 2009. Earth surface processes. John Wiley and Sons. Scitech, 551.3 72 Sharma, V.K., 2010. Introduction to process geomorphology. CRC Press. Scitech, 551.41 113
SOIL2005 Soil and Water: Earth's Life Support Systems

Credit points: 6 Teacher/Coordinator: Prof Balwant Singh Session: Semester 1 Classes: Lectures: 3 hours per week; lab: 3 hours per week for 10 weeks Prohibitions: SOIL2003 or LWSC2002 Assessment: Field excursion: attendance and creative assessment (5%), the attendance at the excursion is complusory to get any mark for this assessment task; quiz: (10%); written assignment: modelling assessment including modelling (15%); laboratory report: group oral presentation and written assignment (20%); final exam: final written exam (50%) Practical field work: Approximately eight hours working field at Cobbitty Farm Wk 0 (Friday, 22 Feb 2019) Mode of delivery: Normal (lecture/lab/tutorial) day
Soil and water are the two most essential natural resources on the Earth's surface which influence all forms of terrestrial life. This unit of study is designed to introduce students to the fundamental properties and processes of soil and water that affect food security and sustain ecosystems. These properties and processes are part of the grounding principles that underpin crop and animal production, nutrient and water cycling, and environmental sustainability. You will participate in a field excursion to examine soils in a landscape to develop knowledge and understanding of soil properties, water storage, water movement and cycling of organic carbon and nutrients in relation to food production and ecosystem functioning. At the end of this unit you will be able to articulate and quantify the factors and processes that determine the composition and behaviour of soil, composition of water, soil water storage and the movement of water on the land surface. You will also be able to describe the most important properties of soil and water for food production and sustaining ecosystem functions and link this to human and climatic factors. The field excursion, report and laboratory/computer exercises have been designed to develop communication, team work and collaborative efforts.
Textbooks
Brady, N.C. and Ray R. Weil. (2007). The Nature and Properties of Soils. 14th Edition, Prentice Hall, New Jersey. White, R.E. (2006) Principles and Practice of Soil Science: the Soil as a Natural Resource. 4th ed., Blackwell Science, Oxford. Diana H. Wall, Richard D. Bardgett, Valerie Behan-Pelletier, Jeffrey E. Herrick, T. Hefin Jones, Karl Ritz, Johan Six, Donald R. Strong, and Wim H. van der Putten (Eds.) (2012). Soil Ecology and Ecosystem Services. Oxford University Press, ISBN: 9780199575923. Kutllek, M and Nielsen, D.R. (2015). Soil: The Skin of the Planet Earth, Springer, ISBN: 978-94-017-9788-7 (Print) 978-94-017-9789-4 (Online). Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., and Nathan, R. J. (2004) Stream Hydrology: an Introduction for Ecologists, John Wiley and Sons Inc.

3000-level units of study

Major core
ENVX3003 Hydrological Monitoring and Modelling

Credit points: 6 Teacher/Coordinator: A/Prof Willem Vervoort Session: Semester 2 Classes: lecture 2hrs/week, computer practical 3hrs/wk Prerequisites: Completion of 72 credit points of units of study Prohibitions: LWSC3007 Assumed knowledge: SOIL2005 or GEOS2116 or ENVI1003 or GEOS1001 or ENSC2001 Assessment: Three individual assignments (25%), group based field report (25%), 2 hr final exam (50%). Practical field work: 3 days fieldwork near Cootamundra Mode of delivery: Normal (lecture/lab/tutorial) day
Globally, and in Australia in particular, water quantity and quality problems are growing due to increasing human use and a changing climate. In this unit, you will engage with field-based and quantitative problems related to water quantity and quality. This includes a multi-day field trip to regional NSW to collect samples and engage with field-based activities. During these activities, you will develop field-based skills for collection of hydrological data. The data will be used later in the unit to analyse and map the water quantity and quality issues in the catchment, relating this to landscape, management and climate. The second part of the unit focusses on developing an insight into model building, model calibration, validation and sensitivity analysis. It links back to the field experience by using long-term data collected by previous student cohorts and focussing on the identified landscape issues. This part of the study will allow you to directly engage with numerical approaches in prediction and forecasting in landscape hydrological models. The unit of study is specifically designed to extend your field hydrological knowledge and to strengthen your analytical and numerical skills in this area.
ENVX3001 Environmental GIS

Credit points: 6 Teacher/Coordinator: Dr Bradley Evans Session: Semester 2 Classes: Three-day field trip, (two lectures and two practicals per week) Prerequisites: 6cp from (ENVI1003 or AGEN1002) or 6cp from GEOS1XXX or 6cp from BIOL1XXX or GEOS2X11 Assessment: 15-minute presentation (10%), 3500 word prac report (35%), 1500 word report on trip excursion (15%), 2-hour exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed to impart knowledge and skills in spatial analysis and geographical information science (GISc) for decision-making in an environmental context. The lecture material will present several themes: principles of GISc, geospatial data sources and acquisition methods, processing of geospatial data and spatial statistics. Practical exercises will focus on learning geographical information systems (GIS) and how to apply them to land resource assessment, including digital terrain modelling, land-cover assessment, sub-catchment modelling, ecological applications, and soil quality assessment for decisions regarding sustainable land use and management. A three day field excursion during the mid-semester break will involve a day of GPS fieldwork at Arthursleigh University farm and two days in Canberra visiting various government agencies which research and maintain GIS coverages for Australia. By the end of this UoS, students should be able to: differentiate between spatial data and spatial information; source geospatial data from government and private agencies; apply conceptual models of spatial phenomena for practical decision-making in an environmental context; apply critical analysis of situations to apply the concepts of spatial analysis to solving environmental and land resource problems; communicate effectively results of GIS investigations through various means- oral, written and essay formats; and use a major GIS software package such as ArcGIS.
Textbooks
Burrough, P.A. and McDonnell, R.A. 1998. Principles of Geographic Information Systems. Oxford University Press: Oxford.
Core Interdisciplinary project
SOIL3888 Protecting the Soil Resource

Credit points: 6 Teacher/Coordinator: A/Prof Stephen Cattle Session: Semester 2 Classes: 4 hrs/week; some weeks 2 hrs lect, 2 hrs prac, other weeks 4 hrs prac Prerequisites: 12cp from (GEOS2X16 or SOIL2005 or SOIL2004 or ENSC2001 or BIOL2032 or BIOL2X31) Assessment: Status of the problem report (500-1000 words, individual work) - 10%; Consultants' report (2000-3000 words, group work) - 35%; Consultants' presentation (30 mins, group work) - 20%; Viva voce examination (20 mins per student) - 35% Practical field work: Between 2 and 5 days of soil survey/soil sampling in regional or peri-urban NSW Mode of delivery: Normal (lecture/lab/tutorial) day
The University of Sydney's new curriculum aims to provide increased experiential, collaborative and interdisciplinary learning and project-based learning is a core component of this. The SOIL3888 interdisciplinary project unit provides an opportunity for you to be part of an interdisciplinary student team that investigates a real world problem involving soil inregional or peri-urban NSW. Each student will select to work on a project related to agriculture or to the environment. Both projects will involve 2-5 days of fieldwork for soil observation and sampling. Students will work collaboratively in a series of practical sessions (before and after the fieldwork) to digitally map soil attributes, and to critically analyse all collected and mapped data. Each project group will then compile a 'consultant's report' for the landholder(s), detailing the issue or problem, the diagnosis and the recommended management strategies to optimize crop production/ecosystem services, while protecting the soil resource. For all students enrolled in SOIL3888, the fieldwork and practical sessions will be scaffolded with a series of lectures covering the high capability agricultural soils of eastern Australia and the various forms of soil degradation that must be managed for to protect our valuable soil resources. The project experience in this unit will give you the opportunity to apply your soil science skills and disciplinary knowledge (Graduate Quality 1) to an authentic problem and develop the other Graduate Qualities (2-6) that will be valuable for your future career.
Major selective
ENVX3002 Statistics in the Natural Sciences

Credit points: 6 Teacher/Coordinator: A/Prof Peter Thomson Session: Semester 1 Classes: One 2-hour workshop per week, one 3-hour computer practical per week Prerequisites: ENVX2001 or BIOM2001 or STAT2X12 or BIOL2X22 or DATA2002 or QBIO2001 Assessment: One computer-based exam during the exam period (50%), assessment tasks focusing on analysing and interpreting real datasets (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Interdisciplinary Unit
This unit of study is designed to introduce students to the analysis of data they may face in their future careers, in particular data that are not well behaved. The data may be non-normal, there may be missing observations, they may be correlated in space and time or too numerous to analyse with standard models. The unit is presented in an applied context with an emphasis on correctly analysing authentic datasets, and interpreting the output. It begins with the analysis and design experiments based on the general linear model. In the second part, students will learn about the generalisation of the general linear model to accommodate non-normal data with a particular emphasis on the binomial and Poisson distributions. In the third part linear mixed models will be introduced which provide the means to analyse datasets that do not meet the assumptions of independent and equal errors, for example data that is correlated in space and time. The units ends with an introduction to machine learning and predictive modelling. A key feature of the unit is using R to develop coding skills that are become essential in science for processing and analysing datasets of ever increasing size.
Interdisciplinary project selective
GEOG3888 Integrated Geographical Practice

Credit points: 6 Teacher/Coordinator: A/Professor Dan Penny Session: Semester 1 Classes: Lecture 2 hrs/week for 12 weeks, practcal/laboratory class 3 hrs per week for 11 weeks Prerequisites: GEOS2X21 and (GEOS2X11 or GEOS2X15 or GEOS2X16 or GEOS2X23) Assessment: Assignments (10%), Written Exam (35%), Projet Report (35%), Project Oral Presentations (15%), Team work participation and evaluation (5%) Mode of delivery: Block mode
Global environmental challenges demand interdisciplinary thinking, and professional practice in interdisciplinary teams. Geography straddles thought and practice in both social and natural sciences, and is therefore inherently interdisciplinary. This unit will provide students with an opportunity to integrate the concepts and skills acquired during their Geography program. In teams, you will work with external partners on specific projects relevnt to them, and provide outcomes directly to those partners. Students will draw on concepts and skills drawn from their training in physical and human geography, and apply them in an integrated way. By completing this unit you will develop skills in contemporary geographical practice with 'real world' impact.
SCPU3001 Science Interdisciplinary Project

Credit points: 6 Teacher/Coordinator: Pauline Ross Session: Intensive December,Intensive February,Intensive January,Intensive July,Semester 1,Semester 2 Classes: The unit consists of one seminar/workshop per week with accompanying online materials and a project to be determined in consultation with the partner organisation and completed as part of team with academic supervision. Prerequisites: Completion of 2000-level units required for at least one Science major. Assessment: group plan, group presentation, reflective journal, group project Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed for students who are concurrently enrolled in at least one 3000-level Science Table A unit of study to undertake a project that allows them to work with one of the University's industry and community partners. Students will work in teams on a real-world problem provided by the partner. This experience will allow students to apply their academic skills and disciplinary knowledge to a real-world issue in an authentic and meaningful way. Participation in this unit will require students to submit an application to the Faculty of Science.
Minor core
ENVX3003 Hydrological Monitoring and Modelling

Credit points: 6 Teacher/Coordinator: A/Prof Willem Vervoort Session: Semester 2 Classes: lecture 2hrs/week, computer practical 3hrs/wk Prerequisites: Completion of 72 credit points of units of study Prohibitions: LWSC3007 Assumed knowledge: SOIL2005 or GEOS2116 or ENVI1003 or GEOS1001 or ENSC2001 Assessment: Three individual assignments (25%), group based field report (25%), 2 hr final exam (50%). Practical field work: 3 days fieldwork near Cootamundra Mode of delivery: Normal (lecture/lab/tutorial) day
Globally, and in Australia in particular, water quantity and quality problems are growing due to increasing human use and a changing climate. In this unit, you will engage with field-based and quantitative problems related to water quantity and quality. This includes a multi-day field trip to regional NSW to collect samples and engage with field-based activities. During these activities, you will develop field-based skills for collection of hydrological data. The data will be used later in the unit to analyse and map the water quantity and quality issues in the catchment, relating this to landscape, management and climate. The second part of the unit focusses on developing an insight into model building, model calibration, validation and sensitivity analysis. It links back to the field experience by using long-term data collected by previous student cohorts and focussing on the identified landscape issues. This part of the study will allow you to directly engage with numerical approaches in prediction and forecasting in landscape hydrological models. The unit of study is specifically designed to extend your field hydrological knowledge and to strengthen your analytical and numerical skills in this area.