University of Sydney Handbooks - 2018 Archive

Download full 2018 archive Page archived at: Fri, 21 Sep 2018 05:39:46 +0000

Animal and Veterinary Bioscience

Errata

Item

Errata Date
1. AVBS4019 Equine Science and Industry is not on offer in 2018. 31/1/2018

ANIMAL AND VETERINARY BIOSCIENCE

Animal and Veterinary Bioscience stream

The Animal and Veterinary Bioscience stream is 120 credit points, consisting of:
(i) 6 credit points of 1000-level degree core units
(ii) 6 credit points of 2000-level degree core units
(iii) A 108 credit point program in Animal and Veterinary Bioscience

Animal and Veterinary Bioscience program

This program is only available to students enrolled in Animal and Veterinary Bioscience stream.
A program in Animal and Veterinary Bioscience requires 108 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level core units
(iii) 6 credit points of 3000-level core units
(iv) 24 credit points of 4000-level research units
(v) 12 credit points of 4000-level advanced coursework selective units
(vi) A 48 credit point major in Animal and Veterinary Bioscience

Animal and Veterinary Bioscience major

This major is only available to students enrolled in Animal and Veterinary Bioscience program.
A major in Animal and Veterinary Bioscience requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 18 credit points of 2000-level core units
(iii) 18 credit points of 3000-level core units, including 1 interdisciplinary unit and 1 project unit

Units of study

The units of study are listed below.

1000-level units of study

Stream Core
ENVX1002 Introduction to Statistical Methods

Credit points: 6 Teacher/Coordinator: A/Prof Thomas Bishop Session: Semester 1 Classes: Two 1-hour lectures per week, one 1-hour tutorial per week, one 2-hour computer practical per week Prohibitions: ENVX1001 Assessment: One exam during the exam period (50%), three reports (10% each), ten online quizzes (2% each) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Available as a degree core unit only in the Agriculture, Animal and Veterinary Bioscience, and Food and Agribusiness streams
This is an introductory statistics unit for students in the agricultural, life and environmental sciences. It provides the foundation for statistics and data science skills that are needed for a career in science and for further study in applied statistics and data science. In the first portion of the unit the emphasis is on describing data using statistical and graphical summaries, and probability models. In the second part the focus is on formal hypothesis testing on experimental data using statistical tests. The final part of the unit is on finding patterns in biological and environmental data, through the use of linear and non-linear functions. In the practicals the emphasis is on applying theory to analysing real datasets using the spreadsheet package Excel and the statistical software package R. A key feature of the unit is using R to develop coding skills that are become essential in science for processing and analysing datasets of ever increasing size.
Textbooks
No textbooks are recommended but useful reference books are:
Program core
AVBS1002 Concepts of Animal Management

Credit points: 6 Teacher/Coordinator: Dr Cameron Clark Session: Semester 2 Classes: On average 6 hours per week (lectures and practicals) Prohibitions: AGEN2006 Assumed knowledge: AGEN1004 or BIOL1XXX or AVBS1003 Assessment: Participation, written assignments, quizzes and end of semester examination Practical field work: There will be several whole day practical classes at the Camden campus Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will explore the management of animals in natural and man-made environments. At the end of this unit of study, students will understand: the characteristics of the management systems of the major domestic species used for production in Australia and in a world wide context; the characteristics and principles underpinning sustainable management of native animals in natural and man-made environments; an appreciation of the dependence of living organisms upon their environment; an appreciation of indigenous land management and the husbandry practices and innovations that have been adopted by the production industries to retain their competitive advantage; a demonstrated capability in handling and husbandry of the major domestic production animal species, and an appreciation of the application of these skills to non-domestic species; a demonstrated understanding of the importance of high standards of animal welfare practice in the management of animals.
Textbooks
There is no single text that adequately covers the unit content and for this reason no formal text is required. Where appropriate, relevant reference material will be identified for specific areas of the course.
AVBS1003 Animals and Us

Credit points: 6 Teacher/Coordinator: Prof Claire Wade Session: Semester 1 Classes: Two lectures; one 3-hour practical; one peer assisted study session per week Prohibitions: VETS1018 Assessment: Assignments, presentation, final exam Mode of delivery: Normal (lecture/lab/tutorial) day
We live in a world surrounded by and dependent on animals. Australia has one of the highest rates of animal ownership in the world: dogs, cats, rabbits, birds and reptiles being common. In this unit, you explore animals in society (including companion, pocket and pet, wildlife and zoo animals). You will investigate relationships between humans and animals and normal function of animals including development, disease, aging and death. This unit will describe how human and animal health are related, outline legislation and policies on the care and use of animals, cover topical issues in animal welfare and ethics, provide opportunities for students to observe animal behaviours and discuss how cultural backgrounds influence our relationships with animals. You will visit captive and clinical animal facilities where animals are displayed for conservation, curiosity, aesthetics and research. Practicals and workshops will provide students with skills in critical thinking, communication, information/digital literacy and an evidence informed basis on which to make decisions. This unit is for students who are interested in a professional career working with animals, such as those in the AVBS stream and BVB/DVM program or who generally seek an understanding of how animals enrich our lives.
Textbooks
Animals and Us Unit of Study Guide and Practical Manual TBD
Major core
CHEM1011 Fundamentals of Chemistry 1A

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February). Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1111 Chemistry 1A

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1,Semester 2,Summer Main Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures and 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3hr practical per week for 12 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, presentations, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
BIOL1007 From Molecules to Ecosystems

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2,Summer Main Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)

Credit points: 6 Teacher/Coordinator: Prof Pauline Ross Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)

Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), project report which includes written report and presentation (50%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be either a synthetic biology project investigating genetically engineered organisms or organismal/ecosystems biology. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS

2000-level units of study

Stream core
ENVX2001 Applied Statistical Methods

Credit points: 6 Teacher/Coordinator: Dr Floris Van Ogtrop Session: Semester 1 Classes: Two 1-hour lectures per week, one 3-hour computer practical per week Prerequisites: [6cp from (ENVX1001 or ENVX1002 or BIOM1003 or MATH1011 or MATH1015 or DATA1001)] OR [3cp from (MATH1XX1 or MATH1906 or MATH1XX3 or MATH1907) and an additional 3cp from (MATH1XX5)] Assessment: One exam during the exam period (50%),three reports (10% each), ten online quizzes (2% each) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Available as a degree core unit only in the Agriculture, Animal and Veterinary Bioscience, and Food and Agribusiness streams
This unit builds on introductory 1st year statistics units and is targeted towards students in the agricultural, life and environmental sciences. It consists of two parts and presents, in an applied manner, the statistical methods that students need to know for further study and their future careers. In the first part the focus is on designed studies including both surveys and formal experimental designs. Students will learn how to analyse and interpret datasets collected from designs from more than than 2 treatment levels, multiple factors and different blocking designs. In the second part the focus is on finding patterns in data. In this part the students will learn to model relationships between response and predictor variables using regression, and find patterns in datasets with many variables using principal components analysis and clustering. This part provides the foundation for the analysis of big data. In the practicals the emphasis is on applying theory to analysing real datasets using the statistical software package R. A key feature of the unit is using R to develop coding skills that are become essential in science for processing and analysing datasets of ever increasing size.
Textbooks
No textbooks are recommended but useful reference books are:
Program core
AVBS2005 to be developed for offering in 2019.
Major core
AVBS2002, AVBS2003 and AVBS2004 to be developed for offering in 2019.

3000-level units of study

Program core
AVBS3000 Professional Development

Credit points: 6 Teacher/Coordinator: Dr Sabrina Lomax Session: Semester 1,Semester 2 Classes: Six preparatory workshops/seminars (throughout years 1-3), four 1-hour industry seminars for case studies (year 3) Assessment: Professional experience reports (65%), case studies (20%), essay on current animal issues (15%) Practical field work: 60 days of professional work experience to be completed by the commencement of fourth year Mode of delivery: Professional practice
Students are required to undertake professional development in University vacations as an integral and essential part of their overall training in the degree of Bachelor of Animal and Veterinary Bioscience. Students will complete 60 days of professional work experience throughout their program by the commencement of fourth year, including a minimum of 20 days spent on commercial animal production enterprises. Students will visit at least two different farming enterprises in the major and emerging animal production industries. The remaining 40 days will include at least one placement with an animal-related business or service provider, and experience in either a scientific research organisation or short scientific volunteer position. Students will undertake additional placements at relevant animal or animal-related businesses, farms or organisations as required to complete 60 days. A professional consultant-style report must be submitted after each placement. Seminars to promote awareness of career options and current issues in animal science will be provided on a regular basis by past graduates and other professionals working in the animal industries. Students are encouraged to attend as many of these as possible throughout their degree program, and are required to submit four case studies based on material presented in these seminars. Attendance at seminars is compulsory during third year. Students will also submit an essay on a current issue in the animal science area of their choice.
Textbooks
On-line resource material will be available
Major core
ANSC3102 Animal Reproduction

Credit points: 6 Teacher/Coordinator: A/Prof Simon de Graaf Session: Semester 1 Classes: Lectures 2 hours per week, tutorials 1 hour per week, practicals 3 hours per week Assumed knowledge: ANSC3104 Assessment: Written and oral assignments (30%), mid-semester practical exam (15%), end of semester written exam (55%) Practical field work: There will be several half day practical classes held at the Camden Campus Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides a comprehensive programme on basic and applied aspects of male and female reproductive biology, with particular emphasis on livestock and domestic animals. The fundamental topics include reproductive cycles, sexual differentiation, gametogenesis, fertilization, embryo development, gestation and parturition. An understanding of the applications of advanced reproductive technologies is developed through lectures, tutorials and the assignments. In addition, practical instruction is given on semen collection and processing, manipulation of the reproductive cycle, artificial insemination, and pregnancy diagnosis in sheep and pigs. Classes are held at the Camperdown Campus in Sydney and at the Camden Campus Animal Reproduction Unit and Mayfarm piggery.
Textbooks
Senger, PL 2013, Pathways to pregnancy and parturition 3rd ed., Current Conceptions Inc
ANSC3105 Animal Biotechnology

Credit points: 6 Teacher/Coordinator: Assoc. Prof. Peter Williamson Session: Semester 2 Classes: Lectures 3 hours per week, tutorials 1 hour per week, practicals 2-3 hours for seven weeks Assessment: Practicals and quizzes (30%), essay and seminars (30%), exam (40%) Practical field work: laboratory practical classes Mode of delivery: Normal (lecture/lab/tutorial) day
Lectures, tutorials, laboratories, seminars and supervised reading and directed learning instruction will cover the application of biotechnology to animal health, animal production and veterinary biosciences. The course is organised around modules that consider the methodologies, ethical and technical issues in application veterinary regenerative technology (gene therapy; stem cell therapy), transgenic technologies, antibody and antigen receptor engineering, molecular diagnostics, and mining molecular bioactives, all discussed in contexts relevant to domestic animals. The course also integrates an introduction to the emerging field of animal biosystems, which covers the application of big data in animal biotechnology.
ANSC3106 Animal Behaviour and Welfare Science 3

Credit points: 6 Teacher/Coordinator: Dr Greg Cronin Session: Semester 2 Classes: 6 hours per week (including lectures, demonstrations, discussions and practical activities); classes will be held at the Camden campus Prerequisites: AVBS1002 Assessment: Assignments/presentations (50%), theory exam (50%) Practical field work: Practical class activities will be held at the May Farm pig unit and Camden poultry research unit, and there will be a full day excursion to Symbio Wildlife Zoo Mode of delivery: Normal (lecture/lab/tutorial) day
In Animal Behaviour and Welfare Science 3, the behavioural and physiological responses of mammals, birds and fish to stressors related to husbandry, housing, transport and slaughter are explored in some detail. This Unit enables students to develop an appreciation of the responses of animals to common interventions that arise in the context of interacting with humans, including the domestication of livestock species and the management of wildlife. The principles of animal responses to stress are illustrated with production species as the main examples. Contemporary approaches to the scientific measurement of animal stress and welfare, based on an appropriate selection of scientific disciplines including ethology, psychology, physiology and neuroscience, are assessed with an emphasis on farmed livestock species. Genetic, environmental and evolutionary determinants of pain, stress and fear responses in animals are considered in the light of what is known about cognition and motivation in animals. Methods for assessing and enhancing animal environments and husbandry systems are examined and the impact on animal behaviour and welfare of stockmanship is explored in the context of human-animal interactions. Finally, the design and conduct of scientific experiments are assessed with a focus on animal ethics and current welfare issues.
Textbooks
Broom, DM and Fraser, AF 2007, Domestic animal behaviour and welfare, 4th edition, CAB International, Cambridge Uni Press, Cambridge

4000-level units of study

Research units
AVBS4015 Research Project A1

Credit points: 6 Teacher/Coordinator: Dr Wendy Muir Session: Semester 1,Semester 2 Classes: Students must attend the compulsory course "Introduction to Animal Research (ITAR)" which is usually held in the week prior to the start of semester. There is no regular face-to-face teaching. The equivalent of 6 hours per week will be allocated from the course work timetable for research project activity. Relevant workshops, for example on scientific writing and statistical analysis will be completed during the sessions when the student is enrolled in AVBS4015, AVBS4016, AVBS4017 and AVBS4018. Prerequisites: Animal and Veterinary Bioscience years 1-3. Students need to have obtained a second/third year WAM commensurate with obtaining honours; and must have the approval of the faculty to enrol. Corequisites: AVBS4016 and AVBS4017 and AVBS4018 Prohibitions: AVBS4013 or AVBS4014 Assessment: written preliminary research proposal, literature review on the research topic, oral presentation on the research proposal, oral presentation on the research at the end of the project, research capabilities, written manuscript (assessment tasks scheduled throughout the four units comprising Research Project A (AVBS4015, AVBS4016, AVBS4017, ABVS4018) with the final grade averaged over all four units) Practical field work: Dependent on the particular research project Mode of delivery: Normal (lecture/lab/tutorial) day
Research Project A is composed of 24 credit points and consists of units AVBS4015 (Research Project A1), AVBS4016 (Research Project A2), AVBS4017 (Research Project A3) and AVBS4018 (Research Project A4). The units need to be taken in chronological order, commencing with enrolment in unit AVBS4015, which must be completed in a semester prior to unit AVBS4018. All four units are connected to the overall completion of the research project. Prior to start of this unit of study, students after consultation with an academic(s) and/or researcher(s) choose an area of research interest and this will form the basis of the entire Research Project A program (24 credit points in total). In unit AVBS4015 students will be required to undertake assessment tasks and conduct research activities.
At the end of this Unit of Study, students will:
Identify a research area, define a problem that impacts on animals and analyse this problem using information from various sources; critically evaluate current research (experimental design, statistical analysis, technical limitations) and identify where the present knowledge limiting for the chosen research topic; assimilate and manage information from within and across disciples to provide new concepts or understanding in the area of research; become familiar with scientific principles of research and the ethical use of animals in research; undertake research related to the project; meet set assessment tasks designed to develop written and oral presentation skills; apply the range of interpersonal skills necessary to work with peers and other researchers; meet deadlines and maintain accurate records related to the project.
Textbooks
No textbooks are required
AVBS4016 Research Project A2

Credit points: 6 Teacher/Coordinator: Dr Wendy Muir Session: Semester 1,Semester 2 Classes: There is no regular face-to-face teaching. The equivalent of 6 hours per week will be allocated from the course work timetable for research project activity. Relevant workshops, for example on scientific writing and statistical analysis will be completed during the sessions when the student is enrolled in AVBS4015, AVBS4016, AVBS4017 and AVBS4018. Prerequisites: Animal and Veterinary Bioscience years 1-3. Students need to have obtained a second/third year WAM commensurate with obtaining honours; and must have the approval of the faculty to enrol. Corequisites: AVBS4015 and AVBS4017 and AVBS4018 Prohibitions: AVBS4013 or AVBS4014 Assessment: See AVBS4015 Practical field work: Dependent on the particular research project Mode of delivery: Normal (lecture/lab/tutorial) day
Students will actively work on the research projects identified at the start of unit AVBS4015. This is will include, where appropriate, undertaking animal and laboratory studies, collection and analysis of samples and data, recording of data, continue to evaluate information from various sources and meet set assessment deadlines.
See under AVBS4015 for further information.
AVBS4017 Research Project A3

Credit points: 6 Teacher/Coordinator: Dr Wendy Muir Session: Semester 1,Semester 2 Classes: The equivalent of 6 hours per week will be allocated from the coursework timetable for research project activity. Relevant workshops, for example on scientific writing and statistical analysis will be completed during the sessions when the student is enrolled in AVBS4015, AVBS4016, AVBS4017 and AVBS4018 Prerequisites: Animal and Veterinary Bioscience years 1-3. Students need to have obtained a second/third year WAM commensurate with obtaining honours; and must have the approval of the faculty to enrol. Corequisites: AVBS4015 and AVBS4016 and AVBS4018 Prohibitions: AVBS4013 or AVBS4014 Assessment: See AVBS4015 Practical field work: Dependent on the particular research project Mode of delivery: Normal (lecture/lab/tutorial) day
See under AVBS4015 and AVBS4016.
AVBS4018 Research Project A4

Credit points: 6 Teacher/Coordinator: Dr Wendy Muir Session: Semester 1,Semester 2 Classes: There is no regular face-to-face teaching. The equivalent of 6 hours per week will be allocated from the coursework timetable for research project activity. Relevant workshops, for example on scientific writing and statistical analysis will be completed during the sessions when the student is enrolled in AVBS4015, AVBS4016, AVBS4017 and AVBS4018. Prerequisites: Animal and Veterinary Bioscience years 1-3. Students need to have obtained a second/third year WAM commensurate with obtaining honours; and must have the approval of the faculty to enrol. Corequisites: AVBS4015 and AVBS4016 and AVBS4017 Prohibitions: AVBS4013 or AVBS4014 Assessment: See AVBS4015 Practical field work: Dependent on the particular research project Mode of delivery: Normal (lecture/lab/tutorial) day
See under AVBS4015 and AVBS4016. Students must complete unit AVBS4018 in a separate semester to unit AVBS4015, and AVBS4015 must be completed prior to AVBS4018.
Selective advanced coursework units
AVBS4002 Dairy Production and Technology

Credit points: 6 Teacher/Coordinator: Prof Sergio (Yani) Garcia Session: Semester 2 Classes: Lectures up to 3 hours per week, practicals 3 hours per week Assumed knowledge: Enrolled students are expected to have some understanding of key components of the dairy production system, including basic knowledge of animal physiology and nutrition. Assessment: Assignment (report or lit review) (30%), pracs assessments, (30%), 1-hour exam (40%) Practical field work: At least two half day field trips and one or two full day trips/excursions including commercial farms and a milk processing plant Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will explore the various aspects of dairy farming and the dairy industry from a scientific point of view. The lectures are a mix of the principles on which sound dairy farming is based and practical examples of how this operates in practice. Focus is placed on integrating knowledge to gain understanding on the system of production as a whole. At the end of this unit of study, students will demonstrate a solid understanding of: the characteristics of the dairy industry in Australia and in a world wide context; the key components of pasture-based dairy systems; principles and practices of pasture and feeding management; the application of new technologies to improve efficiency and productivity (particularly automatic milking). In addition, students will demonstrate an appreciation of key aspects of reproduction and lactation physiology; the integration of knowledge of genetics and reproduction into the type of herd improvement structure set up in the dairy industry; the application of ruminant physiology knowledge to developing feeding programs for dairy cows; the extension of basic reproductive physiology onto the dairy farm using case studies as examples; the economics of the dairy farm business. Practical classes include milking cows; grazing and feeding management of dairy cows; calf rearing; and visits to commercial farms ranging from small pasture-based dairy farms to a feed-lot operation milking over 2,000 cows.
Textbooks
Students are advised to consult lecturers for recommended text, scientific and professional articles, technotes for advisors and industry-generated information for farmers
AVBS4004 Food Safety Assessment and Management

Credit points: 6 Teacher/Coordinator: Dr Gary Muscatello Session: Semester 2 Classes: Lectures 3 hours per week, tutorial/practicals 2 hours per week Prerequisites: AVBS3001 and AVBS4001 Assessment: 1000wd individual report (20%), 1000wd group assignment (20%), 2-hour exam (50%), MCQ (10%) Practical field work: Two field trips (compulsory) 16 hours total Mode of delivery: Normal (lecture/lab/tutorial) day
This Unit of Study focuses on the issues and practices in the animal industry relevant to food safety and zoonotic disease. This unit will cover general food safety issues, including risk assessment and hazard analysis of microbes and chemicals. Food-borne diseases of animal origin and their impact on public heath will be explored through the examination of zoonotic diseases in scenario-based learning activities. In these processes diagnostic and strategic methods of investigating, controlling and preventing food-borne disease outbreaks will be explored. Students will be introduced to national and international animal and human health policy pertaining to food safety regulations and surveillance initiatives and strategies that underpin these policies. Students in this unit will be introduced to the issues regarding emerging food-borne pathogens and current industry driven topics. By the end of the unit, students should have global and local perspective on the major food-borne diseases, surveillance and control programs. This unit is located at the Camden Campus.
Textbooks
Torrence ME and Isaacson RE (eds) 2003, Microbial food safety in animal agriculture current topics, Iowa State Press, Ames, Iowa
AVBS4005 Feed Technology

Credit points: 6 Teacher/Coordinator: Dr Cormac O¿Shea Session: Semester 1 Classes: Lectures three hours per week Prerequisites: ANSC3101 Assessment: Debate (10%), one page argument (10%), article (15%), lab book and feed formulation exercises (25%), 2-hour written exam (40%) Practical field work: Practicals/field work 3hrs/wk Mode of delivery: Normal (lecture/lab/tutorial) day
Feed accounts for approximately 70% of the input costs associated with animal industries, including both monogastric (poultry and pigs, laboratory animals) ruminants (feedlot cattle and sheep) and caecal fermenters (horses, rabbits). The "feed industry" is described as the largest supporting industry for animal agriculture and is a major employer of graduates (undergraduate and postgraduate). Feed technology is a broad topic and includes aspects of feed ingredient characteristics, feed manufacturing, feed additive biotechnology and applied nutrition. The course will provide in-depth understanding of the feed industry, factors influencing ingredient variability and availability (physical and economic), methods and applications of processing of ingredients to increase nutritional value, assessment of digestibility, and feed additives and supplements. All facets of the production and regulation of feed production will be discussed relative to their importance in animal agriculture and food production. Expect applied practical information as well as fairly detailed nutritional biochemistry.
Textbooks
No textbook required
AVBS4012 Extensive Animal Industries

Credit points: 6 Teacher/Coordinator: A/Prof Russell Bush Session: Semester 1 Classes: Lectures 3 hours per week, practicals 3 hours per week Prerequisites: Animal and Veterinary Bioscience years 1-3 OR Bachelor of Science in Agriculture years 1-3 Assessment: Case study (10%), practical report (15%), meat grading (15%), excursion report (20%) and written exam (40%) Practical field work: Five-day study tour to the Riverina Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces the concepts of sheep (wool and meat) and beef cattle production in the Australian environment within the context of world food and fibre consumption and production. The key products as well as domestic and export markets for these are presented. The course provides an historical perspective of the basis for each of these industries and describes each of the production systems designed to meet the demand for these products.
Production in both the tropical and temperate regions of Australia will be covered and include the key elements of extensive grazing and intensive feedlot systems. Major issues will include breeds and breeding systems, basic nutrition and production practices and animal welfare issues as they affect the quality and quantity of product marketed.
The concepts of first stage processing of both meat and fibre products in abattoirs and top-making plants respectively will be presented. The major factors that influence the quality of product and therefore grading and market demand will be presented.
Lecture material will be supported with appropriate practical classes and a 5 day study tour to the Riverina to evaluate different commercial production systems. Students will also have an opportunity to compete in the annual Inter Collegiate Meat Judging (ICMJ) competition as a member of the University of Sydney team. This competition involves teams from numerous universities throughout Australia as well as Japan and the USA.
AVBS4019 Equine Science and Industry

Credit points: 6 Teacher/Coordinator: Dr Natasha Hamilton Session: Semester 2 Classes: One day a week, variable Assessment: Assignments (50%), mid-semester and final examinations (50%) Practical field work: Two offsite excursions to a racetrack and a commecrial horse stud Mode of delivery: Normal (lecture/lab/tutorial) day
This Unit of Study will give students wishing to work in the equine industries a strong scientifically based grounding in this field. The emphasis is on developing the students' basic knowledge of equine management, including day to day care, nutrition, reproduction, behaviour and training, disease and exercise physiology. Students will be introduced to the structure of equine industries in Australia, and basic horse handling and husbandry skills will be taught.
Textbooks
Equine Science, Pillner and Davies