Bachelor of Resource Economics
Units of study
Year 1
AGEN1001 Shaping our Landscapes
Credit points: 6 Teacher/Coordinator: Mr Peter Ampt (Coordinator), Dr Elizabeth Nolan Session: Semester 1 Classes: 2x1hr lect, 1x2hr tut, 4x1day (6.5hr) field (ave 2hrs/week) Prohibitions: AFNR1001 Assessment: 1x 2hr exam (40%), Field class reports (10%), Group work participation and reflection (10%), Tutorial group journal (20%), Problem based learning project (20%) Practical field work: Preparation, revision and private study 3hrs/week Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to help students develop understanding of our non-urban landscapes and the physical, biological, economic and cultural factors that have shaped them, with particular emphasis on the interaction between production and environment. It is a core first year unit for students in BScAgr, BEnvSys, BResEc, BAgEc and BAnVetBioSc from the Vet Faculty.
The unit begins with a review of the current global issues around population, food, agriculture and environment and the place of Australia in this global context. Australia's current production (plant and animal based) and environmental systems and landscapes are described with an emphasis on the physical, biological, economic and cultural factors that have shaped them, concluding with an account of future production and environment scenarios.
At the end of this unit, students should be able to describe global production and environment issues and key Australian landscapes and production systems, explain the factors that have shaped them and apply this understanding to a specific location and production system. They should analyse the situation of natural resource managers and evaluate the options available to them to maintain or improve profitable production and achieve sustainability.
The students will gain research and inquiry skills through research based group projects, information literacy and communication skills through on-line discussion postings, tutorial discussions and presentations and personal and intellectual autonomy through working in groups and individually.
Textbooks
To be advised during semester.
ECMT1010 Business and Economic Statistics A
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x2-hr workshop/week Prohibitions: ECMT1011, ECMT1012, ECMT1013, MATH1015, MATH1005, MATH1905, STAT1021, ECOF1010, BUSS1020, ENVX1001 Assessment: homework (15%), quizzes (30%), assignment (15%) and 1x2hr final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolmentin the following sessions:Summer Main
This unit provides an introduction to basic statistics and its applications in economics and business disciplines. Topics include: methods for data management; analysis and interpretation of data; probability; the normal distribution; an introduction to sampling theory and hypothesis testing; and the concepts of regression analysis. A key component is the provision of instruction and experience in the use of computers and statistical software as an aid in the analysis of data. Students are expected to use data resources on the world wide web, retrieve data and analyse this data using Excel.
or
MATH1001 Differential Calculus
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1011, MATH1901, MATH1906, MATH1111, ENVX1001 Assumed knowledge: HSC Mathematics Extension 1 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1001 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study looks at complex numbers, functions of a single variable, limits and continuity, vector functions and functions of two variables. Differential calculus is extended to functions of two variables. Taylor's theorem as a higher order mean value theorem.
Textbooks
As set out in the Junior Mathematics Handbook.
or
MATH1901 Differential Calculus (Advanced)
Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1111, MATH1011, MATH1001, MATH1906, ENVX1001 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. It parallels the normal unit MATH1001 but goes more deeply into the subject matter and requires more mathematical sophistication.
Textbooks
As set out in the Junior Mathematics Handbook
and
MATH1002 Linear Algebra
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1902, MATH1014 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
or
MATH1902 Linear Algebra (Advanced)
Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1002, MATH1014 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. It parallels the normal unit MATH1002 but goes more deeply into the subject matter and requires more mathematical sophistication.
Textbooks
As set out in the Junior Mathematics Handbook
ECON1001 Introductory Microeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Assessment: online quizzes (10%), 1x mid-semester test (30%), 1x essay (10%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Introductory Microeconomics addresses the economic decisions of individual firms and households and how these interact in markets. It is a compulsory core unit for the Bachelor of Economics and an alternative core unit for the Bachelor of Economic and Social Science. Economic issues are pervasive in contemporary Australian society. Introductory Microeconomics introduces students to the language and analytical framework adopted in Economics for the examination of social phenomena and public policy issues. Whatever one's career intentions, coming to grips with economic ideas is essential for understanding society, business and government. Students are given a comprehensive introduction to these ideas and are prepared for the advanced study of microeconomics in subsequent years. It is assumed that students undertaking this unit will have a prior knowledge of mathematics.
And 1 elective unit from Table RE1, with a view to completing a Table RE3 non-ResEc major
AGEC1102 Agricultural and Resource Economics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 2 Classes: 3x1-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prohibitions: AGEC1002 Assumed knowledge: HSC Mathematics or HSC Mathematics Extension 1 Assessment: 1x1hr exam (25%), 1xassignment (15%) and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The unit applies the principles studied in introductory microeconomics to the agricultural and resource sectors. Some descriptive content regarding Australia's agricultural markets, natural resource assets and industries is included. The first part of the unit is focused on basic concepts of supply, demand, equilibrium in agricultural and resource markets, and how markets can be modeled mathematically. Subsequent parts of the unit are focused on introductory production economics and natural resource management (under conditions of market failure, and as dynamic processes). Sources of risk in agriculture and resource markets, alternative management strategies, and basic techniques of decision making in the face of risk are explored.
AGEN1002 Sustaining our Landscapes
Credit points: 6 Teacher/Coordinator: Professor Mark Adams (Coordinator), A/Professor Budiman Minasny, Dr Niggol Seo, Dr Andrew Merchant, Dr Tarryn Turnbull, Dr Tihomir Ancev Session: Semester 2 Classes: 2 x lectures + 1 x tutorial / wk, 1 x 4 day field trip Assumed knowledge: School Year 12 level knowledge of mathematics, some biology and chemistry. Assessment: 1 x 2hr exam (50%), 4 x tutorial papers (24%) (Draft tutorial papers to submitted for editing by academic staff), 1 x field trip report (26%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The quest for sustainability is integral to all land management. The earth's natural systems - especially cycles of water, carbon and nutrients - are critical to economic, social and many other aspects of the world in which we live. As a country dependent on export of commodities, Australia must contend with very significant external forces that shape how we manage land.
This unit of study provides students with critical knowledge and understanding of the economic, biophysical, and chemical principles that must be considered in assessing sustainability, and applies that knowledge to assessing how current Australian landscapes might be managed in the future. Beginning with an exploration of the meaning of sustainability and how scientific and economic methodology is applied to its study, students will progressively engage with more complex and challenging content. By the end of the unit, students will have explored major elements of sustainability and be able to apply their understanding to articulate critical questions that need to be asked when presented with simplistic approaches or ideas. A major field trip will focus on introducing students to quantitative measurement of key processes and developing a greater depth of knowledge of sustainability "in the field". A range of typical Australian landscapes will be considered, ranging from the high country and forests to intensive irrigated agriculture. The field trip and tutorial exercises are intended to help students gain skills in rigorous analysis of the relevant literature and in preparing short pieces of writing. Students direct experience of and exposure to the science and economics of ecological sustainability. Students will work in small groups during field and tutorial sessions.
Textbooks
A Critique for Ecology R.H. Peters, 1991, Cambridge University Press
ECON1002 Introductory Macroeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Assessment: tutorial participation (5%), 5x online quizzes (10%), mid-semester test (25%), essay (10%) and 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Introductory Macroeconomics addresses the analysis of the level of employment and economic activity in the economy as a whole. It is a compulsory core unit for the Bachelor of Economics and an alternative core unit for the Bachelor of Economic and Social Sciences. Introductory Macroeconomics examines the main factors that determine the overall levels of production and employment in the economy, including the influence of government policy and international trade. This analysis enables an exploration of money, interest rates and financial markets, and a deeper examination of inflation, unemployment and economic policy. It is assumed that students undertaking this unit will have a prior knowledge of mathematics.
ECMT1020 Business and Economic Statistics B
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 2x1-hr lectures/week, 1x2-hr workshop/week Prerequisites: ECMT1010 or ECOF1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015 Prohibitions: ECMT1001, ECMT1002, ECMT1003, ECMT1021, ECMT1022, ECMT1023 Assessment: 3x quizzes (25%), workshop questions/homework (10%), assignment (15%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Other than in exceptional circumstances, it is strongly recommended that students do not undertake Business and Economic Statistics B before attempting Business and Economic Statistics A.
This focus of this unit is to develop a student's understanding of regression analysis. The unit covers how linear regression models can be used to estimate relationships, to forecast, and to test hypotheses that arise in economics and business. Guidelines for using econometric techniques effectively are discussed and students are introduced to the process of model building. To develop a student's understanding of regression, economic applications are emphasised. This unit also makes extensive use of econometric software.
or
MATH1003 Integral Calculus and Modelling
Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
or
MATH1903 Integral Calculus and Modelling Advanced
Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1003, MATH1013, MATH1907 Assumed knowledge: HSC Mathematics Extension 2 or Credit or better in MATH1001 or MATH1901 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1903 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study parallels the normal unit MATH1003 but goes more deeply into the subject matter and requires more mathematical sophisticaton.
Textbooks
As set out in the Junior Mathematics Handbook
and
ECMT1020 Business and Economic Statistics B
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 2x1-hr lectures/week, 1x2-hr workshop/week Prerequisites: ECMT1010 or ECOF1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015 Prohibitions: ECMT1001, ECMT1002, ECMT1003, ECMT1021, ECMT1022, ECMT1023 Assessment: 3x quizzes (25%), workshop questions/homework (10%), assignment (15%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Other than in exceptional circumstances, it is strongly recommended that students do not undertake Business and Economic Statistics B before attempting Business and Economic Statistics A.
This focus of this unit is to develop a student's understanding of regression analysis. The unit covers how linear regression models can be used to estimate relationships, to forecast, and to test hypotheses that arise in economics and business. Guidelines for using econometric techniques effectively are discussed and students are introduced to the process of model building. To develop a student's understanding of regression, economic applications are emphasised. This unit also makes extensive use of econometric software.
or
MATH1003 Integral Calculus and Modelling
Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
or
MATH1903 Integral Calculus and Modelling Advanced
Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1003, MATH1013, MATH1907 Assumed knowledge: HSC Mathematics Extension 2 or Credit or better in MATH1001 or MATH1901 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1903 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study parallels the normal unit MATH1003 but goes more deeply into the subject matter and requires more mathematical sophisticaton.
Textbooks
As set out in the Junior Mathematics Handbook
and
MATH1005 Statistics
Credit points: 3 Session: Semester 2,Summer Main,Winter Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1015, MATH1905, STAT1021, STAT1022, ECMT1010, ENVX1001, BUSS1020 Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1005 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit offers a comprehensive introduction to data analysis, probability, sampling, and inference including t-tests, confidence intervals and chi-squared goodness of fit tests.
Textbooks
As set out in the Junior Mathematics Handbook
or
MATH1905 Statistics (Advanced)
Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1015, MATH1005, STAT1021, STAT1022, ECMT1010, ENVX1001, BUSS1020 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This Advanced level unit of study parallels the normal unit MATH1005 but goes more deeply into the subject matter and requires more mathematical sophistication.
Textbooks
As set out in the Junior Mathematics Handbook
Year 2
AGEC2103 Production Economics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 2x1-hr lectures/week, 1x2-hr tutorial/week commencing week 2 Prerequisites: ECON1001 or AGEC1006 or (AGEC1003 and AGEC1004) or RESEC1031 Prohibitions: AGEC2003 Assessment: 2 x assignments (40%) and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit builds on microeconomic principles studied in first year and applies them to the analysis of firms' decisions. Emphasis is put on the formalization of the firm's problem and in the use of duality. The topics include: production functions (single and multi-output); distance functions and their use in the measurement of productivity; the decomposition of productivity and productivity changes; production under risk; cost and profit functions.
N.B. Available to 2nd year students in the Faculty of Economics and Business
Textbooks
Collection of readings
AGEC2105 Applied Econometric Modelling 1
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 2x1-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prerequisites: (ECMT1010 or MATH1905 or MATH1005 or MATH1015) and ECMT1020 Prohibitions: ECMT2110 Assessment: 1x1hr exam (25%), 1xassignment (15%) and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Applied Econometric Modelling is designed to provide students with a sound understanding of the application of applied econometric methods to the agricultural and resource sectors. Topics covered will include: single and multiple regression, forecasting, dummy variables, violations of OLS assumptions, dynamics, binary choice models, and an introduction to cointegration. Emphasis will be placed on developing the ability to estimate and interpret economic relationships. The computing side of the unit involves the use of the statistical package EVIEWS.
This unit of study is designed to develop student understanding and capability in applied regression analysis.
It is a core unit for students in BAgrEc and BResEc, students and a non core unit for BScAgr students.
Students will become familiar with exploring data sets and estimating, interpreting, and assessing regressions that represent economic relationships.
At the end of this unit, students will be able to understand the major concepts and principles of applied regression analysis, estimate simple regressions in EVIEWS and interpret the output, and be able to read, understand, and possibly replicate recent literature in agricultural and resource economics journals that apply econometric methods.
The students will gain research and computing skills.
Textbooks
D.N. Gujarati & D.C. Porter, Basic Econometrics, 5th Ed. (McGraw-Hill Irwin), New York.
or
Students wanting to take a second major in Econometrics must enrol in ECMT 2150. Note this unit is not otherwise a substitute for AGEC2105. Enrolment in ECMT2150 requires Degree Coordinator permission.
ECOS2001 Intermediate Microeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Prerequisites: ECON1001 or BUSS1040 Corequisites: ECMT1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015 Prohibitions: ECON2001, ECOS2901, ECON2901 Assessment: tutorial participation (10%), 2x in-class tests (40%) and 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Certain combinations of Maths/Stats may substitute for Econometrics. Consult the School of Economics Undergraduate Coordinator.
The aim of Intermediate Microeconomics is the development of theoretical and applied skills in economics. It covers applications and extensions of the theory of consumer choice, firm behaviour and market structure. Emphasis is given to the economics of information and choice under uncertainty; industry structures other than monopoly and perfect competition; markets for factors of production; general equilibrium and economic efficiency; market failure and the role of government. This unit provides a basis for the more specialised options that comprise third year economics.
AGEC2101 Market and Price Analysis
Credit points: 6 Teacher/Coordinator: Dr. Shyamal Chowdhury Session: Semester 2 Classes: 1x2-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prerequisites: AGEC1006 or (AGEC1003 and AGEC1004) or AGEC1002 or AGEC1102 or RSEC1031 or AGEC1031 Prohibitions: AGEC2001 Assessment: 1x1hr in-class mid-term exam (20%), 1x3000wd assignment (20%), 1x2hr final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit focuses on the nature of agricultural and resource commodity markets, market demand relationships, market supply relationships, price determination under alternative market structures, marketing margin relationships, derived demand for inputs, spatially and temporally related markets, market dynamics, price expectations, commodity futures markets and other pertinent topics. Applied examples from the agricultural and resource industries and the overall economy will be used throughout the semester as illustrations of the principles involved.
N.B. Available to 2nd year students in Faculty of Economics and Business.
Advised prerequisite: AGEC2105 or ECMT2110
ECOS2002 Intermediate Macroeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Prerequisites: ECON1002 Corequisites: ECMT1020 Prohibitions: ECON2002, ECOS2902, ECON2902 Assessment: mid-semester test (30%), assignments (20%) and 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Certain combinations of Maths/Stats may substitute for Econometrics. Consult the School of Economics Undergraduate Coordinator.
This unit of study develops models of the goods, money and labour markets, and examines issues in macroeconomic policy. Macroeconomic relationships, covering consumption, investment, money and employment, are explored in detail. Macro-dynamic relationships, especially those linking inflation and unemployment, are also considered. Exchange rates and open economy macroeconomics are also addressed. In the last part of the unit, topics include the determinants and theories of economic growth, productivity and technology, the dynamics of the business cycle, counter-cyclical policy and the relationship between micro and macro policy in the context of recent Australian experience.
RSEC2031 Resource Economics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 2 Classes: 3x 1hr lectures/week, 1x1 hr tutorial/week commencing week 2. Prohibitions: AGEC1031, RSEC1031 Assessment: 1x 1hr mid semester exam (25%), 1x assignment (15%), 1 x 2 hr end of semester exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit builds on the unit Agricultural and Resource Economics. Particular concepts in economics are used to provide insights into efficient and sustainable resource management. The primary focus of this unit is analytical. Emphasis is placed on the importance of property rights structures, cost-effective regulations and dynamic considerations in managing natural resource stocks and environmental assets. Some material on economic valuation of environmental assets and benefit cost analysis is included.
And 2 elective units from Tables RE2 and RE3, with a view to completing a Table RE3 non-ResEc major
Year 3
Year 3 will have a minimum of 48 credit points comprised of:
AGEC3102 Agricultural and Resource Policy
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 1x2-hr lecture + 1x1-hr lectures/week, 1x2-hr tutorial/week commencing week 2 Prerequisites: (AGEC2001 or AGEC2101) and (AGEC2003 or AGEC2103) Prohibitions: AGEC3002 Assessment: 1x2.5hr exam (70%) and 3x1 problem sets (30%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit covers the theoretical framework for economic analysis of policy interventions (welfare economics and public choice theory). Emphasis is put on building the skills needed to analyze the incidence of economic policy and on the design of policies under asymmetric information. An understanding of the institutional structure of agricultural and resource policy in Australia is promoted through the direct contact with policy makers, public agencies and lobbying groups.
N.B. Available to 3rd year students in the Faculty of Economics and Business
AGEC3103 Applied Optimisation
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: (2x1hr lec & 1x2hr tut/lab session)/wk, commencing week 1 Prerequisites: (AGEC2001 or AGEC2101) and (AGEC2003 or AGEC2103) Prohibitions: AGEC3101 Assessment: 1x2hr exam (70%) and 2 assignments (better done one (18%), other (12%)) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study deals with constrained optimization problems in which one or more constraints are inequalities. Such problems are explored/solved by "mathematical programming" techniques. The main focus of the unit is on linear programming (LP) problems, viz. problems in which the objective function and the constraint functions are all linear, and the application of LP in agricultural and other planning contexts. Topics include graphical and mathematical representation of LP problems, solution methods, solution information, stability of optimal solutions, primal and dual formulations and parametric programming. After covering the essentials of LP and its extension to integer LP, the focus shifts to modelling real world scenarios as optimization problems. Students are streamed: one group deals with specialized LP formulations (e.g. transportation model, stochastic programming). The other examines dynamic optimization for problems that involve inter-temporal resource allocation. Students develop experience and confidence in the use of spreadsheet-based optimizer routines, and with specialised optimization packages (e.g. LINDO).
ENVI3111 Environmental Law and Ethics
Credit points: 6 Teacher/Coordinator: Dr Josephine Gillespie Session: Semester 1 Classes: One 2 hour lecture and one 1 hour tutorial per week. Prerequisites: 12 credit points of intermediate units of study Prohibitions: ENVI3911 Assessment: Essays, tutorials (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is co-taught by the School of Geosciences and the Unit for the History and Philosophy of Science. The unit is divided into two parts: (1) environmental law and governance and (2) environmental ethics. Environmental regulation and governance plays an important role in regulating human impacts on the environment. The law and governance part of this unit provides an introduction and overview to environmental regulation. We look at key environmental issues through an examination of legal policies, legislation and case law at a variety of scales (international, national and state/local). This unit also highlights the ways in which environmental law and governance is increasingly interconnected to other areas of environmental studies. The ethics component helps students develop thoughtful and informed positions on issues in environmental ethics using arguments derived from traditional ethics as well as environmentally specific theories. Ethical conflicts are often inevitable and difficult to resolve but using the resources of philosophical ethics and regular reference to case studies, students can learn to recognize the values and considerations at stake in such conflicts, acknowledge differing viewpoints and defend their own well considered positions.
And 1 elective unit from Table 2, with a view to completing a Table 4 non-ResEc major
AGEC3104 Research Methods
Credit points: 6 Teacher/Coordinator: Dr Elizabeth Nolan Session: Semester 2 Classes: 2x1-hr lectures/week & 1x1-hr tutorial/week, commencing week 2 Prerequisites: AGEC2105 Prohibitions: AGEC3004 Assessment: 1x2000wd "Methods" chapter (40%) and 1x3000wd "Results" chapter (40%) and 2xlab reports (2x10%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit deals with the nature of research and inquiry in applied economics. Topics covered will include: alternative philosophical perspectives on inquiry; scientific method; research as an orderly process of enquiry; preparation of research proposals; secondary data sources for agricultural and resource economists; collection of primary data;; and methods of analysis of data. Topics are illustrated with examples of research in theoretical economics and empirical research. Students are expected to read widely. Development of practical research skills, including the ability to critically and statistically synthesise and interpret data will be fostered by the completion of applied computer-based workshop exercises. Information literacy skills and the ability to summarise and synthesise information and use it to inform an argument will be improved through the preparation of a literature review and a research proposal.
Economics level 3 ECOS3000 unit
Level 2/3 units of study from the School of Economics or Sydney Business School
And 1 elective unit from Table 2, with a view to completing a Table RE3 non-ResEc major
Year 4
AGEC4121 Research Exercises A
Credit points: 9 Teacher/Coordinator: Dr David Ubilava Session: Semester 1 Classes: 1x2-hr lectures/week Prerequisites: 2 units out of AGEC3101, AGEC3102, AGEC3103, AGEC 3104 or AGEC3004 Corequisites: AGEC4122 Prohibitions: AGEC4012, AGEC4112 Assessment: Group report (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study should be taken in conjunction with the companion unit, AGEC4122 Research Exercises B. Students develop skills in economic research by participating in the designing, undertaking and reporting on one or more research exercises undertaken under the guidance of a staff member. Students work in groups on a project that is common to the entire class. Students may be required to work on separate aspects of that project or may be required to prepare individual and/or group written reports and/or oral presentations concerning data acquisition, analysis and interpretation of results. Students who undertake this unit will not be eligible for honours.
or
RSEC4141 Resource Economics Project A
Credit points: 9 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 2x2-hr lectures/week Prerequisites: AGEC3104 or AGEC3004 or AGEC4041 Corequisites: RSEC4142 Prohibitions: AGEC4012, AGEC4112 Assessment: Individual report (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
In this unit of study, students develop skills in economic research be designing, undertaking and reporting on a single research study (thesis). Student undertake research on an apporved topic under the supervision of a member of staff and prepare a report of approximately 25,000 words in length.
RSEC4131 Benefit-Cost Analysis
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 1x2 hr lecture/wk commencing week 1 & 1x1 hr tut/wk, commencing week 2. Prerequisites: (ECON2001 or ECOS2001) and (AGEC2103 or AGEC2003) Prohibitions: AGEC4037 Assessment: 1 x oral presentation (5%), 1 x written group-work essay (20%), 1 x 1hr mid-semester exam (25%), 1 x 2hr final examination (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit provides a detailed treatment of benefit-cost analysis and its use in public sector decision making and project evaluation. The underpinning concepts in welfare economics are analysed in detail, such as economic efficiency, criteria for assessing social welfare improvements, and economic surplus measures. Procedures of undertaking a benefit-cost analysis are presented, and tools of non-market valuation for environmental assets are covered in detail. These techniques include both stated and revealed preference techniques, including contingent valuation, choice modeling, hedonic pricing and travel cost methods.
And 1 level 4000 AGEC, with a maximum of 1 level 4000 AGEC unit for the entire year.
Semester 1 4000 electives below:
AGEC4103 International Agricultural Trade
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 2x1-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prerequisites: (AGEC2001 or AGEC2101) and (AGEC2003 or AGEC2103) Prohibitions: AGEC4003 Assessment: 1x1hr exam (25%),1xessay (15%) and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
In this unit of study the basic economic principles underlying international trade in agricultural and resource commodities and the policies involved will be presented. Issues related to trade and development will also be considered. The main topics covered will include: trends in agricultural and resources trade; economics and politics of protection, economic integration and impacts on international commodity trade; international trade policy making. An understanding of globalisation, including foreign direct investment, will also be required. Extensive reading will be required.
Textbooks
Krugman and Obstfeld. International Economics: Theory and Policy, 9th Ed. (Pearson Addison Wesley), New York.
(available 2014, NOT available 2015)
AGEC4104 Industrial Organization of Agribusiness
Credit points: 6 Teacher/Coordinator: Dr David Ubilava Session: Semester 1 Classes: 1x2-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prerequisites: (AGEC2001 or AGEC2101) and (AGEC2003 or AGEC2103) Assessment: 1x2000 wd assignment (20%), 1x1000 wd review (10%), 1x15min presentation (5%), 1x1page evaluation of a peer (5%), and 1x2hr final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit focuses on applications of economic theory and methods in agribusiness decision making. It provides advanced treatment of the industrial organisation of agribusiness firms. Case studies will be used to examine the economic complexities of global agribusiness systems. Extensive readings make up the central component of the unit.
Textbooks
Collections of readings.
AGEC4107 Special Topics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1,Semester 2 Classes: Individual research and consultation Prohibitions: AGEC4007 Assessment: Research paper (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This unit deals with the specialised areas of agricultural and resource economics of particular interest to approved students. The student will read under the guidance of a member of staff and complete designated learning tasks.
Textbooks
Individual reading.
Department permission required for enrolment.
AGEC4108 Quantitative Planning Methods
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 2 Classes: (2x1hr lec & 1x2 tut/lab session)/wk, commencing week 1 Prerequisites: AGEC3101 or AGEC3103 or AGEC3031 or AGEC3001 Prohibitions: AGEC4008 Assessment: 1x2hr exam (70%) and 2 assignments (better done one (18%), other (12%)) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit examines the use of mathematical methods and models in planning at both the individual firm level and the sector level. While the principal focus is on formal optimization, simulation and Monte Carlo methods are also discussed. Topics include non-linear programming, stochastic programming, elements of input-output analysis, computable general equilibrium analysis, dynamic problems and methods (e.g. dynamic programming and optimal control). Sectoral level planning applications considered include transportation and plant location studies; spatial equilibrium; and resource utilization across time. Firm level applications may include multi-period planning, queuing problems, inventory analysis, and replacement problems. Extensive use is made of computer-based optimization.
AFNR4001 Professional Development
Credit points: 6 Teacher/Coordinator: Dr Damien Field Session: Semester 2 Classes: Workshops over four years Prohibitions: AGRF4000 Assessment: 1x blog posting (10%), 1x on-line (multi-media) (30%) and 1x portfolio (60%) Practical field work: 40 days of professional experience, 1 week long excursion Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This unit of study is designed to allow students to critically reflect on the relationship between the rural enterprise and environment and how they can contribute to the future decisions and management affecting the rural community. It is a core unit of study in 4th year for the BAgrEc, BScAgr, BLWSc, BResEc, BHortSc which requires students to complete 40 days of professional experience with the expectation that students will examine the nature of facts from their degree in this environment. A minimum of 15 days must be completed on-farm/field. The remaining days may be at the student's discretion. The unit will be counted towards 4th year, but professional experience placements will normally be undertaken throughout the degree. In the early stages of the Professional Development program students participate in Faculty excursions that have been developed so they can experience a range of activities, such as research, extension, on-farm and industry both in the rural and urban environment to complement their learning within their individual degree programs. Building on this various workshops have been developed to assist students to identify a rural environment theme or issue of their interest with the specific emphasis being placed on them reflecting on how their new understandings of their theme of interest affects their personal and professional development. To complete this unit students will present a portfolio of their theme including critical reflection on the pivotal relationships between the academic degree, rural environment, professional experience, and beliefs and values if the rural community. Through developing these pivotal relationships, students will be able to use their new understandings to support and guide the future developments in the rural enterprise and environment. By developing and presenting the portfolio and engaging in other online activities the students will enhance their skills in inquiry, information literacy and communication. In particular the autonomous development of case studies reflecting the contemporary issues in agriculture and their professional placements the students will have to consider their understandings of ethical, social and professional issues and further develop the personal and intellectual autonomy.
Note: Department permission required for enrolment
AGEC4122 Research Exercises B
Credit points: 9 Teacher/Coordinator: Dr Elizabeth Nolan Session: Semester 2 Classes: 1x2-hr lectures/week Prerequisites: 2 units out of AGEC3101, AGEC3102, AGEC3103, AGEC3104, or AGEC3004 Corequisites: AGEC4121 Prohibitions: AGEC4013, AGEC4113 Assessment: Group report (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is taken in conjunction with the companion unit, AGEC4121 Research Exercises A. See AGEC4121 for details.
or
RSEC4142 Resource Economics Project B
Credit points: 9 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 2 Classes: 2x2-hr lectures/week Prerequisites: AGEC3104 or AGEC4112 or AGEC4041 Corequisites: RSEC4141 Prohibitions: AGEC4013, AGEC4113 Assessment: Individual report (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This unit of study is taken in conjunction with the companion unit, RSEC4141 Resource Economics Project A. See RSEC4141 for details.
Textbooks
Not applicable as this is a research unit.
RSEC4132 Environmental Economics
Credit points: 6 Teacher/Coordinator: Dr Tihomir Ancev Session: Semester 2 Classes: 2x1-hr lectures/week commencing week 1, 1x1-hr tutorial/week commencing week 2 Prerequisites: ECON2001 or ECOS2001 or AGEC2103 or AGEC2003 or RSEC2031 Prohibitions: ECON3013, AGEC4035 Assumed knowledge: (ECON2001 or ECOS2001), (ECON2002 or ECOS2002), (AGEC3001or AGEC3101), AGEC2101, AGEC2105 Assessment: 1xreport and presentation from the practical experience in environmental economics (20%), 1x1hr mid-term exam (30%), and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The unit provides theoretical and empirical background necessary for a resource economist to be able to successfully function when faced with various environmental problems. The unit investigates economic aspects of a range of environmental issues. The studied concepts are exemplified with environmental problems related to agriculture (soil salinity, algal blooms, overgrazing etc.) as well as with environmental problems typical to Australia. The guiding economic themes are: competing uses of the environment / externalities, market failure, the importance of property rights, optimal allocation of pollution abatement, and the processes for making choices relating to non-market goods. Some social issues with environmental impacts are studied through exploration of the problems of population size and distribution, economic growth, and environmental regulation.
Textbooks
Perman, R., Y. Ma, J. McGilvray and M. Common. Natural Resource and Environmental Economics. Pearson, 3rd Ed. 2003
RSEC4133 Economics of Mineral & Energy Industries
Credit points: 6 Teacher/Coordinator: Dr Tihomir Ancev Session: Semester 2 Classes: 2x1-hr lectures/week commencing week 1, 1x1-hr tutorial/week commencing week 2 Prerequisites: (ECON2001 or ECOS2001) and (AGEC2103 or AGEC2003) Prohibitions: ECON3013 Assumed knowledge: (ECON2002 or ECOS2002), AGEC3001, AGEC2101, AGEC2105 Assessment: Excursion attendance and report (25%); 1x1hr mid-term exam (30%) and 1x2 hr final exam (45%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The unit provides theoretical and empirical background on the economics of minerals exploration, extraction and marketing and on the economics of energy generation, distribution and use. The economics of minerals and energy commodity markets will be discussed and analysed. The interactions of mineral extraction and energy generation activities with other natural resources and the environment will be of particular interest (e.g. mine site remediation, land use conflicts). Sustainability and prospects for long term efficient use of these resources, as well as the development and use of alternative technologies will also be discussed. In addition, institutional and policy issues (e.g. regulatory reform), will be analysed. The unit will discuss the main aspects of the markets for minerals and energy, market structure, business environment and price movements. The unit will also provide an introductory discussion on the markets for derivatives (options, futures, forward, swaps) on minerals and energy commodities.
Textbooks
Brennan, T.J., Palmer, L.K. and Martinez, A.S., Alternating Currents: Electricity Markets and Public Policy, Resources for the Future Press, Washington D.C., 2002.
And 1 level 4000 AGEC or RSEC elective unit, with a maximum of 1 level 4000 AGEC unit for the entire year.
Semester 2 electives below:
AGEC4102 Agricultural Development Economics
Credit points: 6 Teacher/Coordinator: Dr. Shyamal Chowdhury Session: Semester 2 Classes: 1x2-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prerequisites: (AGEC2001 or AGEC2101) and (AGEC2003 or AGEC2103) Assessment: 1x2000 wd problem set (20%), 1x1000 wd review (10%), 1x15min presentation (5%), 1x1page evaluation of a peer (5%), and 1x2hr final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit focuses on the microeconomic analysis of development, with a special emphasis on the importance of market failures in financial markets as origin of persistent poverty. The unit also addresses policy interventions to overcome such failures and the challenges in their evaluation. A special emphasis is put in the discussion of the role of agriculture in development, and the evidence supporting its importance in poverty reduction.
Textbooks
Debraj Ray, Development Economics, Princeton University Press.
AGEC4107 Special Topics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1,Semester 2 Classes: Individual research and consultation Prohibitions: AGEC4007 Assessment: Research paper (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This unit deals with the specialised areas of agricultural and resource economics of particular interest to approved students. The student will read under the guidance of a member of staff and complete designated learning tasks.
Textbooks
Individual reading.
Department permission required for enrolment.
The units below are available in 2015, but will be NOT available in 2014
AGEC4103 International Agricultural Trade
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 2x1-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prerequisites: (AGEC2001 or AGEC2101) and (AGEC2003 or AGEC2103) Prohibitions: AGEC4003 Assessment: 1x1hr exam (25%),1xessay (15%) and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
In this unit of study the basic economic principles underlying international trade in agricultural and resource commodities and the policies involved will be presented. Issues related to trade and development will also be considered. The main topics covered will include: trends in agricultural and resources trade; economics and politics of protection, economic integration and impacts on international commodity trade; international trade policy making. An understanding of globalisation, including foreign direct investment, will also be required. Extensive reading will be required.
Textbooks
Krugman and Obstfeld. International Economics: Theory and Policy, 9th Ed. (Pearson Addison Wesley), New York.
RSEC4134 Economics of Water & Bio-resources
Credit points: 6 Teacher/Coordinator: Dr Tihomir Ancev Session: Semester 2 Classes: 2x1-hr lectures/week commencing week 1, 1x1-hr tutorial/week commencing week 2 Prerequisites: (ECON2001 or ECOS2001) and (AGEC2103 or AGEC2003) Prohibitions: ECON3013 Assumed knowledge: (ECON2002 or ECOS2002), AGEC3001, AGEC2101, AGEC2105 Assessment: 1xessay (35%); 1x1hr mid-term exam (25%); 1x2hr final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The unit consists of two complementary parts: water economics and economics of biological resources (fisheries, forestry, other wildlife). The main objective of the water economic component is to investigate the economic aspects of water use and water quality. In particular approaches toward efficient use of the water resource over time, optimal allocation of water among competing uses and achievement of the socially optimal level of water quality will be discussed. The demand for water from various sectors will be analysed in both static and dynamic settings. Issues considered include the selection and construction of water storages, aquifer water extraction and alternative water sources. The issues of waste water disposal and water quality, changing water technologies, and water pollution will be also discussed. There will be particular emphasis on the economic mechanisms for managing the water resources including property rights, water allocation and water markets. The key policy instruments (taxes, quotas, standards) in these areas will be analyzed and discussed. The institutional and policy aspects will also be considered through analysis of water policy reform in Australia and elsewhere. The main objective of the economics of biological resources will be to introduce students to the bio-economic modelling of the resources that experience biological growth. This will be prominently exemplified through various aspects of fishery economics. The unit will also discuss the economics of forestry.
Textbooks
Bergstrom, Boule and Poe (Eds.), The Economic Value of Water Quality, Edward Elgar Pub., 2001.
Table RE1: Elective units of study available for inclusion in years 1 or 2 of the BResEc degree
- Students may count no more that 12 credit points of the units specified in this table as elective units towards meeting the requirements of their degree (equivalently, 24 credit points in total when the units of compulsory Year 1 science are counted).
- Prerequisites apply for many second semester units.
BIOL1001 Concepts in Biology
Credit points: 6 Teacher/Coordinator: Dr Charlotte Taylor Session: Semester 1,Summer Main Classes: Two 1-hour lectures and one 3-hour practical per week. Prohibitions: BIOL1911, BIOL1991 Assumed knowledge: HSC Biology, however, students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February). Assessment: One 2-hour exam, assignments tests and lab quizzes (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Concepts in Biology is an introduction to the major themes of modern biology. The unit covers fundamental cell biology, with a particular emphasis on cell structure and function; the foundations of molecular biology from the role of DNA in protein synthesis to the genetics of organisms; and the theory of evolution and principles of phylogenetic analysis, including how these are used to interpret the origins of the diversity of extant organisms. Practical classes focus on students designing experiments, making and recording their observations and communicating their findings. The unit emphasises how biologists carry out scientific investigations, from the molecular and cellular level to the level of ecosystems. This unit of study provides a good foundation for intermediate biology units of study.
Textbooks
Knox R B et al. Biology, An Australian Focus. 4th ed. McGraw-Hill. 2010
BIOL1002 Living Systems
Credit points: 6 Teacher/Coordinator: Dr William Figueira Session: Semester 2 Classes: Two 1-hour lectures and one 2.5-hour practical per week and tutorials every few weeks. Prohibitions: BIOL1902 Assumed knowledge: HSC Biology, however, students who have not completed HSC biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February). Assessment: One 2-hour exam, assignments, quizzes (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Living Systems deals with the biology of organisms as individuals, within populations and as part of communities and ecosystems. A broad range of taxa is presented, from bacteria to large plants and animals, and emphasis is placed on understanding the ways in which they can live in different habitats. Behaviour is discussed as a key process linking organismal-level processes to population and community dynamics. The importance of energy in living systems, and how elements are used and recycled in biological communities, are introduced as the basis of ecosystems. The unit of study includes lectures and laboratory classes on the physiology and behaviour of animals and plants, the ways in which organisms control and integrate their activities and the processes controlling dynamics of populations and community. These themes are revisited within applied contexts to discuss issues such as management and conservation. This unit of study provides a good foundation for intermediate biology units of study.
Textbooks
Knox R B et al. Biology. An Australian Focus. 4th ed. McGraw-Hill. 2010.
BIOL1902 Living Systems (Advanced)
Credit points: 6 Teacher/Coordinator: Dr William Figueira Session: Semester 2 Classes: Two 1-hour lectures and one 2.5-hour practical per week and tutorials every few weeks. Prerequisites: Distinction or better in the BIOL1001 or BIOL1911 or BIOL1991 or BIOL1003 or BIOL1903 or BIOL1993 OR HSC Biology equal to 90 or greater OR an ATAR equal to 95 or greater Prohibitions: BIOL1002 Assessment: One 2-hour exam, assignments, quizzes, independent project (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study has the same overall structure as BIOL1002 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1902 participate in alternative components, which include a separate lecture and practical stream from BIOL1001. The content and nature of these components may vary from year to year.
Textbooks
As for BIOL1002.
CHEM1001 Fundamentals of Chemistry 1A
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 9 weeks. Prohibitions: CHEM1101, CHEM1109, CHEM1901, CHEM1903 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study, but students who have not undertaken an HSC chemistry course are strongly advised to complete a chemistry bridging course before lectures commence. Assessment: Theory examination (60%), laboratory work (15%), online assignments (10%) and continuous assessment quizzes (15%) Practical field work: A series of 9 three-hour laboratory sessions, one per week for 9 weeks of the semester. Mode of delivery: Normal (lecture/lab/tutorial) Day
The aim of the unit of study is to provide those students whose chemical background is weak (or non-existent) with a good grounding in fundamental chemical principles together with an overview of the relevance of chemistry. There is no prerequisite or assumed knowledge for entry to this unit of study. Lectures: A series of 39 lectures, three per week throughout the semester.
Textbooks
A booklist is available from the First Year Chemistry website. http://sydney.edu.au/science/chemistry/firstyear
CHEM1101 Chemistry 1A
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 9 weeks. Corequisites: Recommended concurrent units of study: 6 credit points of Junior Mathematics Prohibitions: CHEM1001, CHEM1109, CHEM1901, CHEM1903 Assumed knowledge: HSC Chemistry and Mathematics Assessment: Theory examination (60%), laboratory work (15%), online assignment (10%) and continuous assessment quizzes (15%) Practical field work: A series of 9 three-hour laboratory sessions, one per week for 9 weeks of the semester. Mode of delivery: Normal (lecture/lab/tutorial) Day
Chemistry 1A is built on a satisfactory prior knowledge of the HSC Chemistry course. Chemistry 1A covers chemical theory and physical chemistry. Lectures: A series of 39 lectures, three per week throughout the semester.
Textbooks
A booklist is available from the First Year Chemistry website. http://sydney.edu.au/science/chemistry/firstyear
CHEM1901 Chemistry 1A (Advanced)
Credit points: 6 Session: Semester 1 Classes: Three 1-hour lectures and one 1-hour tutorial per week; one 3-hour practical per week for 9 weeks. Prerequisites: ATAR of at least 95 and HSC Chemistry result in band 5 or 6, or by invitation. Corequisites: Recommended concurrent unit of study: 6 credit points of Junior Mathematics Prohibitions: CHEM1001, CHEM1101, CHEM1109, CHEM1903 Assessment: Theory examination (60%), laboratory work (15%), online assignment (10%) and continuous assessment quizzes (15%) Practical field work: A series of 9 three-hour laboratory sessions, one per week for 9 weeks of the semester. Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
Chemistry 1A (Advanced) is available to students with a very good HSC performance as well as a very good school record in chemistry or science. Students in this category are expected to do Chemistry 1A (Advanced) rather than Chemistry 1A.
The theory and practical work syllabuses for Chemistry 1A and Chemistry 1A (Advanced) are similar, though the level of treatment in the latter unit of study is more advanced, presupposing a very good grounding in the subject at secondary level. Chemistry 1A (Advanced) covers chemical theory and physical chemistry. Lectures: A series of about 39 lectures, three per week throughout the semester.
Textbooks
A booklist is available from the First Year Chemistry website. http://sydney.edu.au/science/chemistry/firstyear
CHEM1002 Fundamentals of Chemistry 1B
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 9 weeks. Prerequisites: CHEM1001 or CHEM1101 or equivalent Prohibitions: CHEM1102, CHEM1108, CHEM1902, CHEM1904 Assessment: Theory examination (60%), laboratory work (15%), online assignment (10%) and continuous assessment quizzes (15%) Practical field work: A series of 9 three-hour laboratory sessions, one per week for 9 weeks of the semester. Mode of delivery: Normal (lecture/lab/tutorial) Day
CHEM1002 builds on CHEM1001 to provide a sound coverage of inorganic and organic chemistry. Lectures: A series of 39 lectures, three per week throughout the semester.
Textbooks
A booklist is available from the First Year Chemistry website. http://sydney.edu.au/science/chemistry/firstyear
CHEM1102 Chemistry 1B
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: One 3 hour lecture and 1 hour tutorial per week; one 3 hour practical per week for 9 weeks. Prerequisites: CHEM1101 or CHEM1901 or a Distinction in CHEM1001 or equivalent Corequisites: Recommended concurrent units of study: 6 credit points of Junior Mathematics Prohibitions: CHEM1002, CHEM1108, CHEM1902, CHEM1904 Assessment: Theory examination (60%), laboratory work (15%), online assignment (10%) and continuous assessment quizzes (15%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Chemistry 1B is built on a satisfactory prior knowledge of Chemistry 1A and covers inorganic and organic chemistry. Successful completion of Chemistry 1B is an acceptable prerequisite for entry into Intermediate Chemistry units of study. Lectures: A series of 39 lectures, three per week throughout the semester.
Textbooks
A booklist is available from the First Year Chemistry website. http://sydney.edu.au/science/chemistry/firstyear
CHEM1902 Chemistry 1B (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1-hour lectures and one 1-hour tutorial per week; one 3-hour practical per week for 9 weeks. Prerequisites: CHEM1901 or CHEM1903 or Distinction in CHEM1101 or equivalent Corequisites: Recommended concurrent unit of study: 6 credit points of Junior Mathematics Prohibitions: CHEM1002, CHEM1102, CHEM1108, CHEM1904 Assessment: Theory examination (60%), laboratory work (15%), online assignment (10%) and continuous assessment quizzes (15%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
Chemistry 1B (Advanced) is built on a satisfactory prior knowledge of Chemistry 1A (Advanced) and covers inorganic and organic chemistry. Successful completion of Chemistry 1B (Advanced) is an acceptable prerequisite for entry into Intermediate Chemistry units of study. Lectures: A series of about 39 lectures, three per week throughout the semester.
Textbooks
A booklist is available from the First Year Chemistry website. http://sydney.edu.au/science/chemistry/firstyear
CLAW1001 Foundations of Business Law
Credit points: 6 Teacher/Coordinator: Mr Giuseppe Carabetta Session: Semester 1,Semester 2 Classes: Two hours of lectures and a one hour tutorial per week Assessment: Mid-Semester exam (20%), Case Analysis Assignment (20%), Final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The entire fabric of commerce is woven from a complex legal regime, judicial and statutory, which regulates all commercial activity. Every decision in business, and every transaction and relationship, is made in the context of this legal regime. The aim of Foundations of Business Law is to introduce the students to the legal framework and regulatory systems which underlie all business activity and to expose them to the legal implications of commercial conduct. This unit of study introduces the Australian legal system and key areas of substantive business law including contracts, torts (in particular negligence and privacy), property and securities, white collar crime, intellectual property, competition and consumer law (in particular advertising, product liability and unfair contracts), business structures and operations, misleading and unconscionable conduct and dispute resolution.
ECMT1010 Business and Economic Statistics A
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x2-hr workshop/week Prohibitions: ECMT1011, ECMT1012, ECMT1013, MATH1015, MATH1005, MATH1905, STAT1021, ECOF1010, BUSS1020, ENVX1001 Assessment: homework (15%), quizzes (30%), assignment (15%) and 1x2hr final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolmentin the following sessions:Summer Main
This unit provides an introduction to basic statistics and its applications in economics and business disciplines. Topics include: methods for data management; analysis and interpretation of data; probability; the normal distribution; an introduction to sampling theory and hypothesis testing; and the concepts of regression analysis. A key component is the provision of instruction and experience in the use of computers and statistical software as an aid in the analysis of data. Students are expected to use data resources on the world wide web, retrieve data and analyse this data using Excel.
GEOS1001 Earth, Environment and Society
Credit points: 6 Teacher/Coordinator: Dr Jody Webster, A/Prof Bill Pritchard, Prof Jonathan Aitchison, Dr Josephine Gillespie Session: Semester 1 Classes: One 2 hour lecture and one 2 hour practical per week. Prohibitions: GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902, ENSY1001 Assessment: One 2 hour exam, 2000 word essay, field and prac reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This is the gateway unit of study for Human Geography, Physical Geography, Environmental Studies and Geology. Its objective is to introduce the big questions relating to the origins and current state of the planet: climate change, environment, landscape formation, and the growth of the human population. During the semester you will be introduced to knowledge, theories and debates about how the world's physical and human systems operate. The first module investigates the system of global environmental change, specifically addressing climate variability and human impacts on the natural environment. The second module presents Earth as an evolving and dynamic planet, investigating how changes take place, the rate at which they occur and how they have the potential to dramatically affect the way we live. Finally, the third module, focuses on human-induced challenges to Earth's future. This part of the unit critically analyses the relationships between people and their environments, with central consideration to debates on population change, resource use and the policy contexts of climate change mitigation and adaptation.
GEOS1002 Introductory Geography
Credit points: 6 Teacher/Coordinator: Dr Kurt Iveson, Dr Dan Penny. Session: Semester 2 Classes: One 2 hour lecture per week and eight 2 hour practicals during semester. Prohibitions: GEOS1902, GEOG1001, GEOG1002 Assessment: One 2 hour exam, one 2000 word essay, two online quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study provides a geographical perspective on the ways in which people interact with each other and the physical world, focussing on the processes that generate spatial variation and difference. This unit will consider the development and characteristics of natural environments across the globe, and will explore how these environments both constrain, and are influenced by, humans. Therefore, the unit of study will consider the biophysical, political, economic, cultural and urban geographies that shape contemporary global society. Each of these themes will be discussed with reference to key examples (such as Hurricane Katrina, the Earthquake in Haiti/Dominican Republic, the conflict in Darfur, and mega-deltas in the developing world), in order to consider the ways in which the various processes (both physical and human) interact. The unit of study is designed to attract and interest students who wish to pursue geography as a major within their undergraduate degree, but also has relevance to students who wish to consider the way geographers understand the contemporary world.
GEOS1003 Introduction to Geology
Credit points: 6 Teacher/Coordinator: A/Prof Tom Hubble, Prof Geoff Clarke Session: Semester 2,Summer Late Classes: Three 1 hour lectures and one 3 hour practical per week. Prohibitions: GEOS1903, GEOL1002, GEOL1902, GEOL1501 Assessment: One 2 hour exam, quizzes, tests, practical reports, field report (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The aim of this unit of study is to examine the chemical and physical processes involved in mineral formation, the interior of the Earth, surface features, sedimentary environments, volcanoes, and metamorphism. Lectures and laboratory sessions on mountain building processes and the formation of mineral deposits will lead to an understanding of the forces controlling the geology of our planet. Processes such as weathering, erosion and nature of sedimentary environments are related to the origin of the Australian landscape. In addition to laboratory classes there is a one-day excursion to the western Blue Mountains and Lithgow to examine geological objects in their setting.
Textbooks
The recommended text is Stephen Marshak, Earth: Portrait of a Planet. W. W. Norton & Company (2007) - Paperback - 832 pages - ISBN 039393036X
GOVT1101 Australian Politics
Credit points: 6 Session: Semester 1 Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Assessment: 2000wd essay (40%) and 1000wd critical research exercise (10%) and 2hr exam (40%) and tutorial participation (10%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit introduces students to debates about the nature and limits of Australian democracy, to the major institutions of Australian politics, and to the distribution of power in Australian society. Major institutions and forces such as parliament, executive government, the federal system, political parties and the media are examined as arenas of power, conflict and consensus. Who rules? How? Which groups are excluded?
GOVT1202 World Politics
Credit points: 6 Teacher/Coordinator: Dr Gil Merom Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week or equivalent intensive Assessment: 500wd essay (10%) and 2300wd essay (35%) and 2hr exam (40%) and tutorial participation (15%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: In Summer School this unit is available to current HSC students only.
This unit introduces the core content of the field of international relations. The first part of the unit presents the realist, liberal, Marxist and constructivist paradigms of international relations. The second part of the unit discusses the key actors and processes political scientists define in the field, including the state, decision makers, bureaucratic organisations, and classes. The final part of the unit focuses on international security, international political economy, and global problems.
PSYC1001 Psychology 1001
Credit points: 6 Teacher/Coordinator: Dr Caleb Owens Session: Semester 1,Summer Main Classes: Three 1 hour lectures and one 1 hour tutorial per week, plus 1 hour per week of additional web-based (self-paced) material related to the tutorial. Assessment: One 2.5hr exam, one 1000w essay, multiple tutorial tests, experimental participation (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Psychology 1001 is a general introduction to the main topics and methods of psychology, and is the basis for advanced work as well as being of use to those not proceeding with the subject. Psychology 1001 covers the following areas: science and statistics in psychology; behavioural neuroscience; applied psychology; social psychology; personality theory; human development.
This unit is also offered in the Sydney Summer School. For more information consult the website:
http://sydney.edu.au/summer_school/
Textbooks
Course Coordinator will advise
PSYC1002 Psychology 1002
Credit points: 6 Teacher/Coordinator: Dr Caleb Owens Session: Semester 2,Summer Main Classes: Three 1 hour lectures and one 1 hour tutorial per week, plus 1 hour per week of additional web-based (self-paced) material related to the tutorial. Assessment: One 2.5 hour exam, one 1250 word research report, multiple tutorial tests, experimental participation (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Psychology 1002 is a further general introduction to the main topics and methods of psychology, and it is the basis for advanced work as well as being of use to those not proceeding with the subject. Psychology 1002 covers the following areas: human mental abilities; learning, motivation and emotion; visual perception; cognitive processes; abnormal psychology.
This unit is also offered in the Sydney Summer School. For more information consult the web site:
http://sydney.edu.au/summer_school/
Textbooks
Course Coordinator will advise
Modern Language (Level 1 or higher) units, with the approval of the Dean FAE.
Notes:
- Students may count no more that 12 credit points of the units specified in this table as elective units towards meeting the requirements of their degree (equivalently, 24 credit points in total when the units of compulsory Year 1 science are counted).
- ACCT1001/ACCT1005 and ACCT1003 are mutually exclusive.
- Entry to ACCT1001/ACCT1005 is restricted: the student's academic record must be as good as that needed for admission to the University's BCom program.
- Prerequisites apply for many second semester units.
Table RE2: Elective units of study available for inclusion in years 2 or 3 of the BResEc degree
Units of study in the following discipline areas (level 2000 or level 3000 unless otherwise specified):
Agricultural Economics (level 3000), Biology (including plant science units), Commercial Law, Econometrics, Economics, Environmental Science, Finance, Geography, Geology, Government, Mathematics (including Statistics), Psychology, Soil Science
- Notes:
AGEC2102 is permitted for Year 2 only.
Prerequisites and/or corequisites apply for most units.
Unit of study |
Credit points |
A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition |
Session |
---|
BIOL1001 Concepts in Biology |
6 |
A HSC Biology, however, students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February). N BIOL1911, BIOL1991
|
Semester 1 Summer Main
|
BIOL1002 Living Systems |
6 |
A HSC Biology, however, students who have not completed HSC biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February). N BIOL1902
|
Semester 2
|
BIOL1902 Living Systems (Advanced) |
6 |
P Distinction or better in the BIOL1001 or BIOL1911 or BIOL1991 or BIOL1003 or BIOL1903 or BIOL1993 OR HSC Biology equal to 90 or greater OR an ATAR equal to 95 or greater N BIOL1002
|
Semester 2
|
CHEM1001 Fundamentals of Chemistry 1A |
6 |
A There is no assumed knowledge of chemistry for this unit of study, but students who have not undertaken an HSC chemistry course are strongly advised to complete a chemistry bridging course before lectures commence. N CHEM1101, CHEM1109, CHEM1901, CHEM1903
|
Semester 1
|
CHEM1101 Chemistry 1A |
6 |
A HSC Chemistry and Mathematics C Recommended concurrent units of study: 6 credit points of Junior Mathematics N CHEM1001, CHEM1109, CHEM1901, CHEM1903
|
Semester 1 Semester 2 Summer Main
|
CHEM1901 Chemistry 1A (Advanced) |
6 |
P ATAR of at least 95 and HSC Chemistry result in band 5 or 6, or by invitation. C Recommended concurrent unit of study: 6 credit points of Junior Mathematics N CHEM1001, CHEM1101, CHEM1109, CHEM1903
Note: Department permission required for enrolment
|
Semester 1
|
CHEM1002 Fundamentals of Chemistry 1B |
6 |
P CHEM1001 or CHEM1101 or equivalent N CHEM1102, CHEM1108, CHEM1902, CHEM1904
|
Semester 2
|
CHEM1102 Chemistry 1B |
6 |
P CHEM1101 or CHEM1901 or a Distinction in CHEM1001 or equivalent C Recommended concurrent units of study: 6 credit points of Junior Mathematics N CHEM1002, CHEM1108, CHEM1902, CHEM1904
|
Semester 1 Semester 2 Summer Main
|
CHEM1902 Chemistry 1B (Advanced) |
6 |
P CHEM1901 or CHEM1903 or Distinction in CHEM1101 or equivalent C Recommended concurrent unit of study: 6 credit points of Junior Mathematics N CHEM1002, CHEM1102, CHEM1108, CHEM1904
Note: Department permission required for enrolment
|
Semester 2
|
CLAW1001 Foundations of Business Law |
6 |
|
Semester 1 Semester 2
|
ECMT1010 Business and Economic Statistics A |
6 |
N ECMT1011, ECMT1012, ECMT1013, MATH1015, MATH1005, MATH1905, STAT1021, ECOF1010, BUSS1020, ENVX1001
Note: Department permission required for enrolment in the following sessions:Summer Main
|
Semester 1 Semester 2 Summer Main
|
GEOS1001 Earth, Environment and Society |
6 |
N GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902, ENSY1001
|
Semester 1
|
GEOS1002 Introductory Geography |
6 |
N GEOS1902, GEOG1001, GEOG1002
|
Semester 2
|
GEOS1003 Introduction to Geology |
6 |
N GEOS1903, GEOL1002, GEOL1902, GEOL1501
|
Semester 2 Summer Late
|
GOVT1101 Australian Politics |
6 |
|
Semester 1
|
GOVT1202 World Politics |
6 |
In Summer School this unit is available to current HSC students only.
|
Semester 1 Semester 2 Summer Main
|
PSYC1001 Psychology 1001 |
6 |
|
Semester 1 Summer Main
|
PSYC1002 Psychology 1002 |
6 |
|
Semester 2 Summer Main
|
Modern Language (Level 1 or higher) units, with the approval of the Dean FAE. |
Majors in the BResEc degree
The definitions of majors in the following tables apply for students commencing in 2005 or later. These students are required to complete 48 credit points in their chosen majors. Their majors must comply with the requirements for the BResEc degree as set out below, and also with the minimum requirements of the discipline teaching that major.
Students who have commenced in 2004 or earlier will be required to complete 44 credit points to obtain a major. The major will be defined according to the criteria as currently determined by the discipline teaching that major. The current requirements for majors in the University of Sydney Business School and the Faculty of Science can be found in the respective faculty handbooks.
All students must complete a Resource Economics major. In addition, students may also complete major(s) in other disciplines.
Notes:
- For disciplines based in other faculties (e.g. Geography is based in the Faculty of Science), the specification of a major here may differ from that in its 'home' faculty. The requirement for a major within the BResEc degree is no less, nor more liberal, than in the discipline's 'home' faculty.
- A student can count a particular unit of study towards only one major.
- Where a student could count a unit of study towards more than one major, the student must nominate by the end of their final year the particular major to which the unit is to be allocated.
Resource Economics Major
Junior (Level 1) units
AGEC1102 Agricultural and Resource Economics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 2 Classes: 3x1-hr lectures/week, 1x1-hr tutorial/week commencing week 2 Prohibitions: AGEC1002 Assumed knowledge: HSC Mathematics or HSC Mathematics Extension 1 Assessment: 1x1hr exam (25%), 1xassignment (15%) and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
The unit applies the principles studied in introductory microeconomics to the agricultural and resource sectors. Some descriptive content regarding Australia's agricultural markets, natural resource assets and industries is included. The first part of the unit is focused on basic concepts of supply, demand, equilibrium in agricultural and resource markets, and how markets can be modeled mathematically. Subsequent parts of the unit are focused on introductory production economics and natural resource management (under conditions of market failure, and as dynamic processes). Sources of risk in agriculture and resource markets, alternative management strategies, and basic techniques of decision making in the face of risk are explored.
Two of:
MATH1001 Differential Calculus
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1011, MATH1901, MATH1906, MATH1111, ENVX1001 Assumed knowledge: HSC Mathematics Extension 1 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1001 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study looks at complex numbers, functions of a single variable, limits and continuity, vector functions and functions of two variables. Differential calculus is extended to functions of two variables. Taylor's theorem as a higher order mean value theorem.
Textbooks
As set out in the Junior Mathematics Handbook.
and
MATH1002 Linear Algebra
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1902, MATH1014 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
or
MATH1003 Integral Calculus and Modelling
Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
and
MATH1005 Statistics
Credit points: 3 Session: Semester 2,Summer Main,Winter Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1015, MATH1905, STAT1021, STAT1022, ECMT1010, ENVX1001, BUSS1020 Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1005 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit offers a comprehensive introduction to data analysis, probability, sampling, and inference including t-tests, confidence intervals and chi-squared goodness of fit tests.
Textbooks
As set out in the Junior Mathematics Handbook
or
ECMT1010 Business and Economic Statistics A
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x2-hr workshop/week Prohibitions: ECMT1011, ECMT1012, ECMT1013, MATH1015, MATH1005, MATH1905, STAT1021, ECOF1010, BUSS1020, ENVX1001 Assessment: homework (15%), quizzes (30%), assignment (15%) and 1x2hr final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Department permission required for enrolmentin the following sessions:Summer Main
This unit provides an introduction to basic statistics and its applications in economics and business disciplines. Topics include: methods for data management; analysis and interpretation of data; probability; the normal distribution; an introduction to sampling theory and hypothesis testing; and the concepts of regression analysis. A key component is the provision of instruction and experience in the use of computers and statistical software as an aid in the analysis of data. Students are expected to use data resources on the world wide web, retrieve data and analyse this data using Excel.
or
ECMT1020 Business and Economic Statistics B
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 2x1-hr lectures/week, 1x2-hr workshop/week Prerequisites: ECMT1010 or ECOF1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015 Prohibitions: ECMT1001, ECMT1002, ECMT1003, ECMT1021, ECMT1022, ECMT1023 Assessment: 3x quizzes (25%), workshop questions/homework (10%), assignment (15%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Other than in exceptional circumstances, it is strongly recommended that students do not undertake Business and Economic Statistics B before attempting Business and Economic Statistics A.
This focus of this unit is to develop a student's understanding of regression analysis. The unit covers how linear regression models can be used to estimate relationships, to forecast, and to test hypotheses that arise in economics and business. Guidelines for using econometric techniques effectively are discussed and students are introduced to the process of model building. To develop a student's understanding of regression, economic applications are emphasised. This unit also makes extensive use of econometric software.
Level 2 and 3 units
AGEC2103 Production Economics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: 2x1-hr lectures/week, 1x2-hr tutorial/week commencing week 2 Prerequisites: ECON1001 or AGEC1006 or (AGEC1003 and AGEC1004) or RESEC1031 Prohibitions: AGEC2003 Assessment: 2 x assignments (40%) and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This unit builds on microeconomic principles studied in first year and applies them to the analysis of firms' decisions. Emphasis is put on the formalization of the firm's problem and in the use of duality. The topics include: production functions (single and multi-output); distance functions and their use in the measurement of productivity; the decomposition of productivity and productivity changes; production under risk; cost and profit functions.
N.B. Available to 2nd year students in the Faculty of Economics and Business
Textbooks
Collection of readings
AGEC3103 Applied Optimisation
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 1 Classes: (2x1hr lec & 1x2hr tut/lab session)/wk, commencing week 1 Prerequisites: (AGEC2001 or AGEC2101) and (AGEC2003 or AGEC2103) Prohibitions: AGEC3101 Assessment: 1x2hr exam (70%) and 2 assignments (better done one (18%), other (12%)) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This unit of study deals with constrained optimization problems in which one or more constraints are inequalities. Such problems are explored/solved by "mathematical programming" techniques. The main focus of the unit is on linear programming (LP) problems, viz. problems in which the objective function and the constraint functions are all linear, and the application of LP in agricultural and other planning contexts. Topics include graphical and mathematical representation of LP problems, solution methods, solution information, stability of optimal solutions, primal and dual formulations and parametric programming. After covering the essentials of LP and its extension to integer LP, the focus shifts to modelling real world scenarios as optimization problems. Students are streamed: one group deals with specialized LP formulations (e.g. transportation model, stochastic programming). The other examines dynamic optimization for problems that involve inter-temporal resource allocation. Students develop experience and confidence in the use of spreadsheet-based optimizer routines, and with specialised optimization packages (e.g. LINDO).
RSEC2031 Resource Economics
Credit points: 6 Teacher/Coordinator: Dr Shauna Phillips Session: Semester 2 Classes: 3x 1hr lectures/week, 1x1 hr tutorial/week commencing week 2. Prohibitions: AGEC1031, RSEC1031 Assessment: 1x 1hr mid semester exam (25%), 1x assignment (15%), 1 x 2 hr end of semester exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This unit builds on the unit Agricultural and Resource Economics. Particular concepts in economics are used to provide insights into efficient and sustainable resource management. The primary focus of this unit is analytical. Emphasis is placed on the importance of property rights structures, cost-effective regulations and dynamic considerations in managing natural resource stocks and environmental assets. Some material on economic valuation of environmental assets and benefit cost analysis is included.
At least three RSEC4000 level units
Non-Resource Economics majors
Biology
Departmental Permission is required to undertake this major.
Junior (Level 1) units
Two BIOL1000 units
Level 2 and 3 units
Two BIOL2000 units
Four BIOL3000 units
See the [[http://sydney.edu.au/handbooks/science||Faculty of Science Handbook]]
Chemistry
Departmental Permission is required to undertake this major.
Junior (Level 1) units
Two CHEM1000 units
12 credit points of junior maths:
MATH1001 Differential Calculus
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1011, MATH1901, MATH1906, MATH1111, ENVX1001 Assumed knowledge: HSC Mathematics Extension 1 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1001 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study looks at complex numbers, functions of a single variable, limits and continuity, vector functions and functions of two variables. Differential calculus is extended to functions of two variables. Taylor's theorem as a higher order mean value theorem.
Textbooks
As set out in the Junior Mathematics Handbook.
MATH1002 Linear Algebra
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1902, MATH1014 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1003 Integral Calculus and Modelling
Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
and
MATH1005 Statistics
Credit points: 3 Session: Semester 2,Summer Main,Winter Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1015, MATH1905, STAT1021, STAT1022, ECMT1010, ENVX1001, BUSS1020 Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1005 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit offers a comprehensive introduction to data analysis, probability, sampling, and inference including t-tests, confidence intervals and chi-squared goodness of fit tests.
Textbooks
As set out in the Junior Mathematics Handbook
Level 2 and 3 units
24 credit points from senior units of study listed in this subject area, which must include the associated laboratory units as per the Faculty of Science Handbook
See the [[http://sydney.edu.au/handbooks/science||Faculty of Science Handbook]]
Commercial Law
Junior (Level 1) units
CLAW1001 Foundations of Business Law
Credit points: 6 Teacher/Coordinator: Mr Giuseppe Carabetta Session: Semester 1,Semester 2 Classes: Two hours of lectures and a one hour tutorial per week Assessment: Mid-Semester exam (20%), Case Analysis Assignment (20%), Final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Business (Business School)
The entire fabric of commerce is woven from a complex legal regime, judicial and statutory, which regulates all commercial activity. Every decision in business, and every transaction and relationship, is made in the context of this legal regime. The aim of Foundations of Business Law is to introduce the students to the legal framework and regulatory systems which underlie all business activity and to expose them to the legal implications of commercial conduct. This unit of study introduces the Australian legal system and key areas of substantive business law including contracts, torts (in particular negligence and privacy), property and securities, white collar crime, intellectual property, competition and consumer law (in particular advertising, product liability and unfair contracts), business structures and operations, misleading and unconscionable conduct and dispute resolution.
Level 2 and 3 units
A minimum of six CLAW2000 or 3000 units
See the [[http://sydney.edu.au/handbooks/business_school||Business School Handbook]]
Econometrics
Junior (Level 1) units
ECMT1010 Business and Economic Statistics A
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x2-hr workshop/week Prohibitions: ECMT1011, ECMT1012, ECMT1013, MATH1015, MATH1005, MATH1905, STAT1021, ECOF1010, BUSS1020, ENVX1001 Assessment: homework (15%), quizzes (30%), assignment (15%) and 1x2hr final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Department permission required for enrolmentin the following sessions:Summer Main
This unit provides an introduction to basic statistics and its applications in economics and business disciplines. Topics include: methods for data management; analysis and interpretation of data; probability; the normal distribution; an introduction to sampling theory and hypothesis testing; and the concepts of regression analysis. A key component is the provision of instruction and experience in the use of computers and statistical software as an aid in the analysis of data. Students are expected to use data resources on the world wide web, retrieve data and analyse this data using Excel.
ECMT1020 Business and Economic Statistics B
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 2x1-hr lectures/week, 1x2-hr workshop/week Prerequisites: ECMT1010 or ECOF1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015 Prohibitions: ECMT1001, ECMT1002, ECMT1003, ECMT1021, ECMT1022, ECMT1023 Assessment: 3x quizzes (25%), workshop questions/homework (10%), assignment (15%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Other than in exceptional circumstances, it is strongly recommended that students do not undertake Business and Economic Statistics B before attempting Business and Economic Statistics A.
This focus of this unit is to develop a student's understanding of regression analysis. The unit covers how linear regression models can be used to estimate relationships, to forecast, and to test hypotheses that arise in economics and business. Guidelines for using econometric techniques effectively are discussed and students are introduced to the process of model building. To develop a student's understanding of regression, economic applications are emphasised. This unit also makes extensive use of econometric software.
Level 2 and 3 units
Four senior elective units of study (24 credit points) selected from the following options with a maximum of three at the 3000 level:
ECMT2130 Financial Econometrics
Credit points: 6 Session: Semester 2 Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Prerequisites: ECMT2110 or ECMT2010 or ECMT1020 Prohibitions: ECMT2030 Assessment: 2x assignments (2x20%) and 1x 2hr final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Over the last decade econometric modelling of financial data has become an important part of the operations of merchant banks and major trading houses and a vibrant area of employment for econometricians. This unit provides an introduction to some of the widely used econometric models for financial data and the procedures used to estimate them. Special emphasis is placed upon empirical work and applied analysis of real market data. Topics covered may include the statistical characteristics of financial data, the specification, estimation and testing of asset pricing models, the analysis of high frequency financial data, and the modelling of volatility in financial returns.
ECMT3120 Applied Econometrics
Credit points: 6 Session: Semester 2 Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Prerequisites: ECMT3110 or ECMT3010 or (ECMT2150 and ECMT2160) Prohibitions: ECMT3020 Assessment: group project (25%), mid-semester test (25%), 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Econometric theory provides techniques to quantify the strength and form of relationships between variables. Applied Econometrics is concerned with the appropriate use of these techniques in practical applications in economics and business. General principles for undertaking applied work are discussed and necessary research skills developed. In particular, the links between econometric models and the underlying substantive knowledge or theory for the application are stressed. Topics will include error correction models, unit roots and cointegration and models for cross section data, including limited dependent variables. Research papers involving empirical research are studied and the unit features all students participating in a group project involving econometric modelling.
ECMT3130 Forecasting for Economics and Business
Credit points: 6 Session: Semester 2 Classes: 2x1-hr lectures/week, 1x1-hr lab/week Prerequisites: ECMT2110 or ECMT2010 or (ECMT2150 and ECMT2160) Prohibitions: ECMT3030 Assessment: assignment (20%), group assignment (25%), mid-semester test (20%) and 2.5hr final exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
The need to forecast or predict future values of economic time series arises frequently in many branches of applied economic and commercial work. It is, moreover, a topic which lends itself naturally to econometric and statistical treatment. The specific feature which distinguishes time series from other data is that the order in which the sample is recorded is of relevance. As a result of this, a substantial body of statistical methodology has developed. This unit provides an introduction to methods of time series analysis and forecasting. The material covered is primarily time domain methods designed for a single series and includes the building of linear time series models, the theory and practice of univariate forecasting and the use of regression methods for forecasting. Throughout the unit a balance between theory and practical application is maintained.
ECMT3150 The Econometrics of Financial Markets
Credit points: 6 Session: Semester 1 Classes: 1x2-hr lecture/week, 1x1-hr lab/week Prerequisites: ((ECMT1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015) and (ECMT2110 or ECMT2010) and (ECMT2130 or ECMT2030)) or (ECMT2130 and ECMT2150 and ECMT2160) Prohibitions: ECMT3050 Assessment: assignment (20%), group assignment (30%), mid-semester test (15%) and 2.5hr final exam (35%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
This unit studies and develops the econometric models and methods employed for the analysis of data arising in financial markets. It extends and complements the material covered in ECMT2130. The unit will cover econometric models that have proven useful for the analysis of both synchronous and non-synchronous financial time series data over the last two decades. Modern Statistical methodology will be introduced for the estimation of such models. The econometric models and associated methods of estimation will be applied to the analysis of a number of financial datasets. Students will be encouraged to undertake hands-on analysis using an appropriate computing package. Topics covered include: Discrete time financial time series models for asset returns; modelling and forecasting conditional volatility; Value at Risk and modern market risk measurement and management; modelling of high frequency and/or non-synchronous financial data and the econometrics of market microstructure issues. The focus of the unit will be in the econometric models and methods that have been developed recently in the area of financial econometrics and their application to modelling and forecasting market risk measures.
ECMT3160 and ECMT3170 are not offered in 2014.
A minimum of three further ECMT2000 and ECMT3000 units
See the [[http://sydney.edu.au/handbooks/arts||Faculty of Arts and Social Sciences Handbook]]
Economics
Junior (Level 1) units
ECMT1010 Business and Economic Statistics A
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x2-hr workshop/week Prohibitions: ECMT1011, ECMT1012, ECMT1013, MATH1015, MATH1005, MATH1905, STAT1021, ECOF1010, BUSS1020, ENVX1001 Assessment: homework (15%), quizzes (30%), assignment (15%) and 1x2hr final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Department permission required for enrolmentin the following sessions:Summer Main
This unit provides an introduction to basic statistics and its applications in economics and business disciplines. Topics include: methods for data management; analysis and interpretation of data; probability; the normal distribution; an introduction to sampling theory and hypothesis testing; and the concepts of regression analysis. A key component is the provision of instruction and experience in the use of computers and statistical software as an aid in the analysis of data. Students are expected to use data resources on the world wide web, retrieve data and analyse this data using Excel.
ECMT1020 Business and Economic Statistics B
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 2x1-hr lectures/week, 1x2-hr workshop/week Prerequisites: ECMT1010 or ECOF1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015 Prohibitions: ECMT1001, ECMT1002, ECMT1003, ECMT1021, ECMT1022, ECMT1023 Assessment: 3x quizzes (25%), workshop questions/homework (10%), assignment (15%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Other than in exceptional circumstances, it is strongly recommended that students do not undertake Business and Economic Statistics B before attempting Business and Economic Statistics A.
This focus of this unit is to develop a student's understanding of regression analysis. The unit covers how linear regression models can be used to estimate relationships, to forecast, and to test hypotheses that arise in economics and business. Guidelines for using econometric techniques effectively are discussed and students are introduced to the process of model building. To develop a student's understanding of regression, economic applications are emphasised. This unit also makes extensive use of econometric software.
ECON1001 Introductory Microeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Assessment: online quizzes (10%), 1x mid-semester test (30%), 1x essay (10%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Introductory Microeconomics addresses the economic decisions of individual firms and households and how these interact in markets. It is a compulsory core unit for the Bachelor of Economics and an alternative core unit for the Bachelor of Economic and Social Science. Economic issues are pervasive in contemporary Australian society. Introductory Microeconomics introduces students to the language and analytical framework adopted in Economics for the examination of social phenomena and public policy issues. Whatever one's career intentions, coming to grips with economic ideas is essential for understanding society, business and government. Students are given a comprehensive introduction to these ideas and are prepared for the advanced study of microeconomics in subsequent years. It is assumed that students undertaking this unit will have a prior knowledge of mathematics.
ECON1002 Introductory Macroeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Assessment: tutorial participation (5%), 5x online quizzes (10%), mid-semester test (25%), essay (10%) and 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Introductory Macroeconomics addresses the analysis of the level of employment and economic activity in the economy as a whole. It is a compulsory core unit for the Bachelor of Economics and an alternative core unit for the Bachelor of Economic and Social Sciences. Introductory Macroeconomics examines the main factors that determine the overall levels of production and employment in the economy, including the influence of government policy and international trade. This analysis enables an exploration of money, interest rates and financial markets, and a deeper examination of inflation, unemployment and economic policy. It is assumed that students undertaking this unit will have a prior knowledge of mathematics.
Level 2 and 3 units
ECOS2001 Intermediate Microeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Prerequisites: ECON1001 or BUSS1040 Corequisites: ECMT1010 or BUSS1020 or MATH1905 or MATH1005 or MATH1015 Prohibitions: ECON2001, ECOS2901, ECON2901 Assessment: tutorial participation (10%), 2x in-class tests (40%) and 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Certain combinations of Maths/Stats may substitute for Econometrics. Consult the School of Economics Undergraduate Coordinator.
The aim of Intermediate Microeconomics is the development of theoretical and applied skills in economics. It covers applications and extensions of the theory of consumer choice, firm behaviour and market structure. Emphasis is given to the economics of information and choice under uncertainty; industry structures other than monopoly and perfect competition; markets for factors of production; general equilibrium and economic efficiency; market failure and the role of government. This unit provides a basis for the more specialised options that comprise third year economics.
ECOS2002 Intermediate Macroeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Prerequisites: ECON1002 Corequisites: ECMT1020 Prohibitions: ECON2002, ECOS2902, ECON2902 Assessment: mid-semester test (30%), assignments (20%) and 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Certain combinations of Maths/Stats may substitute for Econometrics. Consult the School of Economics Undergraduate Coordinator.
This unit of study develops models of the goods, money and labour markets, and examines issues in macroeconomic policy. Macroeconomic relationships, covering consumption, investment, money and employment, are explored in detail. Macro-dynamic relationships, especially those linking inflation and unemployment, are also considered. Exchange rates and open economy macroeconomics are also addressed. In the last part of the unit, topics include the determinants and theories of economic growth, productivity and technology, the dynamics of the business cycle, counter-cyclical policy and the relationship between micro and macro policy in the context of recent Australian experience.
Any four further ECOS2000 or ECOS3000 units, of which at least three must be at the 3000 level
See the [[http://sydney.edu.au/handbooks/arts||Faculty of Arts and Social Sciences Handbook]]
Finance
Junior (Level 1) units
Any one junior unit of study (six credit points) from the University of Sydney Business School.
ECMT1010 Business and Economic Statistics A
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x2-hr workshop/week Prohibitions: ECMT1011, ECMT1012, ECMT1013, MATH1015, MATH1005, MATH1905, STAT1021, ECOF1010, BUSS1020, ENVX1001 Assessment: homework (15%), quizzes (30%), assignment (15%) and 1x2hr final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Note: Department permission required for enrolmentin the following sessions:Summer Main
This unit provides an introduction to basic statistics and its applications in economics and business disciplines. Topics include: methods for data management; analysis and interpretation of data; probability; the normal distribution; an introduction to sampling theory and hypothesis testing; and the concepts of regression analysis. A key component is the provision of instruction and experience in the use of computers and statistical software as an aid in the analysis of data. Students are expected to use data resources on the world wide web, retrieve data and analyse this data using Excel.
ECON1001 Introductory Microeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Assessment: online quizzes (10%), 1x mid-semester test (30%), 1x essay (10%) and 1x2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Introductory Microeconomics addresses the economic decisions of individual firms and households and how these interact in markets. It is a compulsory core unit for the Bachelor of Economics and an alternative core unit for the Bachelor of Economic and Social Science. Economic issues are pervasive in contemporary Australian society. Introductory Microeconomics introduces students to the language and analytical framework adopted in Economics for the examination of social phenomena and public policy issues. Whatever one's career intentions, coming to grips with economic ideas is essential for understanding society, business and government. Students are given a comprehensive introduction to these ideas and are prepared for the advanced study of microeconomics in subsequent years. It is assumed that students undertaking this unit will have a prior knowledge of mathematics.
ECON1002 Introductory Macroeconomics
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x2-hr lecture/week, 1x1-hr tutorial/week Assessment: tutorial participation (5%), 5x online quizzes (10%), mid-semester test (25%), essay (10%) and 2hr final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Arts and Social Sciences
Introductory Macroeconomics addresses the analysis of the level of employment and economic activity in the economy as a whole. It is a compulsory core unit for the Bachelor of Economics and an alternative core unit for the Bachelor of Economic and Social Sciences. Introductory Macroeconomics examines the main factors that determine the overall levels of production and employment in the economy, including the influence of government policy and international trade. This analysis enables an exploration of money, interest rates and financial markets, and a deeper examination of inflation, unemployment and economic policy. It is assumed that students undertaking this unit will have a prior knowledge of mathematics.
Level 2 and 3 units
FINC2011 Corporate Finance I
Credit points: 6 Session: Semester 1,Semester 2,Summer Main,Winter Main Classes: 1 x 2hr lecture and 1 x 1hr tutorial per week Prohibitions: FINC2001 Assumed knowledge: ECMT1010 or BUSS1020, BUSS1040 or (ECON1001 and ECON1002) and BUSS1030 (or ACCT1001 and ACCT1002) Assessment: Mid-semester exam (20%), major assignment (30%) and final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Business (Business School)
Note: Note: Study in Finance commences in second year. BUSS1020 (or ECMT1010), BUSS1040 (or ECON1001 and ECON1002) and BUSS1030 (or ACCT1001 and ACCT1002) are recommended for all students wanting to study Finance.
This unit provides an introduction to basic concepts in corporate finance and their application to (1) valuation of risky assets including stocks, bonds and entire corporations, (2) pricing of equity securities, and (3) corporate financial policy decisions including dividend, capital structure and risk management policies. Emphasis is placed on the application of the material studied and current practices in each of the topic areas.
FINC2012 Corporate Finance II
Credit points: 6 Session: Semester 1,Semester 2,Summer Early Classes: 1x 2hr lecture and 1x 1hr tutorial per week Prerequisites: FINC2011 or FINC2001 Prohibitions: FINC2002 Assessment: Mid-semester exam (15%), essay (20%), and final exam (65%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Business (Business School)
This unit builds on FINC2011 Corporate Finance I, by extending basic concepts in corporate financing, investing and risk management. The unit presents current theories of corporate financing and their practical application in corporate investment and capital budgeting. The unit also examines securities and securities markets with an emphasis on pricing, investment characteristics and their use by corporations to manage risk. The securities examined include: bonds and related fixed income products; futures and options. The goal of the unit is to broaden students' knowledge of corporate finance in preparation for further study in finance in 300 level courses.
FINC3017 Investments and Portfolio Management
Credit points: 6 Session: Semester 1,Semester 2,Summer Main Classes: 1x 2h lecture and 1x 1hr tutorial per week Prerequisites: FINC2011 Prohibitions: FINC3007 Assessment: 2 x reports (15% each), essay (15%) and final exam (55%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Business (Business School)
Note: Students who achieved less than a credit in FINC2011 are advised not to attempt FINC3017 until they have completed FINC2012.
This unit is designed to provide a comprehensive analytical approach to the modern theory of investments. Topics covered include: mean-variance analysis; Markowitz type portfolio analysis; portfolio construction; asset pricing theories; market efficiency and anomalies; hedge funds and investment fund performance evaluation. Although analytical aspects of investments theory are stressed, there is also an equal amount of coverage on the practical aspects of portfolio management. Current research on investments is emphasised in the course.
A minimum of three (18 credit points) further FINC3000 level units
See the [[http://sydney.edu.au/handbooks/business_school||Business School Handbook]]
Geography
Junior (Level 1) units and Level 2 units
Some junior elective and intermediate GEOG/GEOS units may be required to meet the prerequisites of Level 3 units for this major.
Level 3 units
24 CP made up of:
GEOS3333 Geographical Concepts, Skills & Methods
Credit points: 6 Teacher/Coordinator: A/Prof Bill Pritchard, Dr Dan Penny Session: Semester 2 Classes: 1 lecture, 2 tutorials per week Prerequisites: 24 credit points of Intermediate units of study including 6 credit points from one of the following units: GEOS2112, GEOS2912, GEOS2123, GEOS2923, GEOS2115, GEOS2915, GEOS2121, GEOS2921, SOIL2002, LWSC2002. Prohibitions: GEOS3933 Assumed knowledge: Basic knowledge of ARC GIS software. Assessment: One 2hr exam, one practical report, one 2000w fieldwork report (100%) Practical field work: 24 hours of fieldwork per semester Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
GEOS3333 is designed to be the 'capstone' for a Major in Geography. Its aim is to bring together the core concepts within the discipline; connect these to methodological practices, and further develop the field-based skills associated with geographical research. Reflecting the straddle of the discipline across the natural and social sciences, this unit draws on a wide diversity of material to impart key insights about the essential qualities of 'doing Geography'. This includes (i) a weekly lecture program which addresses three thematic concerns of Geography (human-environment interactions; spatial relations; and politics, policy and practice) using examples from the natural and social science perspectives at global, national and local scales; (ii) a two-hour prac class each week which introduces key methods (relevant to both the natural and social science parts of the discipline) and which leads to a major research proposal exercise; and (iii) 24 hours fieldwork through the semester, which can take the form either of a three-day field trip to rural NSW or three separate day-trips within Sydney. GEOS3333 is one of two compulsory units for the Geography Major (the other is GEOS3053) and is highly recommended for students contemplating Honours in Geography.
or
GEOS3933 Geog. Concepts, Skills & Methods (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Bill Pritchard, Dr Dan Penny Session: Semester 2 Classes: 1 lecture, 2 tutorials per week Prerequisites: Distinction average in 24 credit points of Intermediate units of study including 6 credit points from one of the following units: GEOS2112, GEOS2912, GEOS2123, GEOS2923, GEOS2115, GEOS2915, GEOS2121, GEOS2921, SOIL2002, LWSC2002. Prohibitions: GEOS3333 Assumed knowledge: Basic knowledge of ARC GIS software. Assessment: One 2hr exam, one practical report, one 2000w fieldwork report (100%) Practical field work: 24 hours of fieldwork per semester Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
GEOS3933 has the same thematic content as GEOS3333 however with elements taught at an Advanced level.
GEOS3053 Southeast Asia Field School
Credit points: 6 Teacher/Coordinator: Professor Philip Hirsch Session: Int July Classes: Five pre-departure lectures during Semester 1 2014, three weeks in-country intensive involving lectures, fieldwork and field-based methods training, readings and small group discussions. Prerequisites: 6 credit points of Intermediate units of study in Geography. Department permission is required for enrolment. Prohibitions: GEOS3953 Assessment: One pre-departure background report, one short field essay, group participation, one consolidation report, one exam. Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Department permission required for enrolment
Note: Students must contact the unit coordinator no later than September in the year before taking this unit.
The unit of study can be taken only with prior permission from the unit of study coordinator. It constitutes a Field School run over a three-week period in July, prior to the commencement of the second semester. In 2014 the Field School will be held in mainland Southeast Asia (three of the Mekong countries China, Thailand, Laos, Cambodia and Viet Nam). In other years it may be held in Indonesia (Java, Sulawesi and Bali). The Field School focuses on three main themes; rural social, environmental and economic change; regional economic integration and its local effects; regional environmental change and natural resources governance. The Field School is run in close association with local universities, whose staff and students participate in some components of the course. Places are limited, and students interested in the 2014 Field School should indicate expression of interest to Professor Philip Hirsch by the end of August 2013.
or
GEOS3953 Southeast Asia Field School (Adv)
Credit points: 6 Teacher/Coordinator: Professor Philip Hirsch Session: Int July Classes: Five pre-departure lectures during Semester 1 2014, three weeks in-country intensive involving lectures, fieldwork and field-based methods training, readings and small group discussions. Prerequisites: 6 credit points of Intermediate units of study in Geography. Department permission required for enrolment. Prohibitions: GEOS3053 Assessment: One pre-departure project proposal, one short field essay, group participation, one field-based research report, one exam. Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Department permission required for enrolment
Note: Students must contact the unit coordinator no later than September in the year before taking this unit.
The unit of study can be taken only with prior permission from the unit of study coordinator. It constitutes a Field School run over a three-week period in July, prior to the commencement of the second semester. In 2014 the Field School will be held in mainland Southeast Asia (three of the Mekong countries China, Thailand, Laos, Cambodia and Viet Nam). In other years it may be held in Indonesia (Java, Sulawesi and Bali). The Field School focuses on three main themes; rural social, environmental and economic change; regional economic integration and its local effects; regional environmental change and natural resources governance. The Field School is run in close association with local universities, whose staff and students participate in some components of the course. Places are limited, and students interested in the 2014 Field School should indicate expression of interest to Professor Philip Hirsch by the end of August 2013.
Plus any of the following units:
GEOS3101 Earth's Structure and Evolution
Credit points: 6 Teacher/Coordinator: A/Prof Patrice Rey, Prof Geoff Clarke Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week, and a 3-day excursion. Prerequisites: (GEOS2114 or GEOS2914) and (GEOS2124 or GEOS2924); or 24 credit points of Intermediate Science units of study and GEOS1003 with permission of the Head of School Prohibitions: GEOS3801, GEOS3003, GEOS3903, GEOS3004, GEOS3904, GEOS3006, GEOS3906, GEOS3017, GEOS3917 Assumed knowledge: GEOS2114, GEOS2124 Assessment: One 2 hour exam, practical and field reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
The Earth's crust and upper mantle, or lithosphere, are a consequence of dynamic and thermal processes operating since the beginning of the Archaean. This unit focuses on information and techniques that enable an understanding of these processes. The main topics presented in this unit include: the formation and evolution of oceanic and continental lithosphere; tectonic deformation, magmatism and metamorphism at plate boundaries; and the mesoscopic and microscopic analysis of igneous and metamorphic rocks. Practical classes and field exercises are designed to enable students to competently and independently identify the common crystalline rocks in hand-specimen; and to gather and interpret the structural field data which enables the determination of the structural style and deformational history presented in particular tectonic settings. The concepts and content presented in this unit are generally considered to be essential knowledge for geologists and geophysicists and provide a conceptual framework for their professional practice. Students wishing to specialise in the field and become professional geologists will normally need to expand upon the knowledge gained from this unit and either complete an honours project or progress to postgraduate coursework in this field.
or
ENVI3111 Environmental Law and Ethics
Credit points: 6 Teacher/Coordinator: Dr Josephine Gillespie Session: Semester 1 Classes: One 2 hour lecture and one 1 hour tutorial per week. Prerequisites: 12 credit points of intermediate units of study Prohibitions: ENVI3911 Assessment: Essays, tutorials (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit of study is co-taught by the School of Geosciences and the Unit for the History and Philosophy of Science. The unit is divided into two parts: (1) environmental law and governance and (2) environmental ethics. Environmental regulation and governance plays an important role in regulating human impacts on the environment. The law and governance part of this unit provides an introduction and overview to environmental regulation. We look at key environmental issues through an examination of legal policies, legislation and case law at a variety of scales (international, national and state/local). This unit also highlights the ways in which environmental law and governance is increasingly interconnected to other areas of environmental studies. The ethics component helps students develop thoughtful and informed positions on issues in environmental ethics using arguments derived from traditional ethics as well as environmentally specific theories. Ethical conflicts are often inevitable and difficult to resolve but using the resources of philosophical ethics and regular reference to case studies, students can learn to recognize the values and considerations at stake in such conflicts, acknowledge differing viewpoints and defend their own well considered positions.
or
ENVI3911 Environmental Law and Ethics (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Josephine Gillespie Session: Semester 1 Classes: One 2-hour lecture and one 1-hour tutorial per week. Prerequisites: Distinction average across 12 credit points of intermediate units of study Prohibitions: ENVI3111 Assessment: Fieldwork component (30%), essays and tutorial papers (70%). Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This advanced unit of study will cover the same core lecture material as for ENVI3111, but students will be required to carry out more challenging practical assignments based on a fieldtrip activity. The fieldwork will take the form of a Land and Environment Court tour and students will be required to provide a report on environmental decision making as part of this assessment.
ENVI3112 Environmental Assessment
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus Session: Semester 2 Classes: One 2-hour lecture per week and one 2-hour tutorial per week. Prerequisites: (GEOS2121 or GEOS2921) and 6 additional credit points of intermediate units Prohibitions: ENVI3002, ENVI3004, ENVI3912 Assessment: Literature review, individual report, presentation (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit of study focuses on environmental impact assessment as part of environmental planning. It seeks to establish a critical understanding of environmental planning and the tools available to improve environmental outcomes. The unit of study addresses the theory and practice of environmental impact statements (EIS) and environmental impact assessment processes (EIA) from scientific, economic, social and cultural value perspectives. Emphasis is placed on gaining skills in group work and in writing and producing an assessment report, which contains logically ordered and tightly structured argumentation that can stand rigorous scrutiny by political processes, the judiciary, the public and the media.
or
ENVI3912 Environmental Assessment (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus Session: Semester 2 Classes: One 2-hour lecture per week and one 2-hour tutorial per week. Prerequisites: Distinction average in ((GEOS2121 or GEOS2921) and 6 additional credit points of intermediate units) Prohibitions: ENVI3112, ENVI3002, ENVI3004 Assessment: Essay, individual report, presentation (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This advanced unit of study will cover the same core lecture, tutorial and group practical material as for ENVI3112. The difference in the Advanced unit of study is that students will be required to write a 3000-word essay that is worth 40% of their semester marks, rather than writing a literature review. The essay will explore the more theoretical and conceptual debates within impact assessment.
GEOS3520 Urban Citizenship & Sustainability
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus, Dr Kurt Iveson Session: Semester 1 Classes: 2 hour lecture and 1 hour tutorial per week, six 2 hours practical sessions. Prerequisites: 24 credit points of Intermediate units of study including 6 credit points from one of the following units: GEOS2112, GEOS2912, GEOS2123, GEOS2923, GEOS2115, GEOS2915, GEOS2121, GEOS2921, SOILS2002, LWSC2002 Prohibitions: GEOS3920 Assessment: One 2hr exam, one 2000w essay, one 2000w group-based prac report (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Cities are now the predominant home for humanity. More than half of the world's population reside in cities. The contemporary growth of cities, however, is attached to profound political questions about what it means to be urban, and what 'being urban' means for the planet. This Unit of Study provides grounding to these crucial questions. In the first half of the semester, lectures address the question: are cities sustainable? Why or why not? And for whom? This focus addresses utopian visions for cities, urban history, ecological footprint analysis, bioregionalism, transport options, urban form and urban policy, with reference to sustainable futures and the role of custodianship. During the second half of the semester, lectures address the question: what does it mean to be a 'citizen', and what has this got to do with cities and different approaches to urban sustainability? This includes consideration of historical and contemporary configurations of citizenship. Case studies illustrate ways in which new forms of citizenship are produced through struggles over rights to the city and the urban environment. Through the semester a practicals program enables students to develop urban-based research projects.
or
GEOS3920 Urban Citizenship & Sustainability (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus, Dr Kurt Iveson Session: Semester 1 Classes: 2 hour lecture and 2 hour tutorial per week Prerequisites: Distinction average in 24 credit points of Intermediate units of study including 6 credit points from one of the following units: GEOS2112, GEOS2912, GEOS2123, GEOS2923, GEOS2115, GEOS2915, GEOS2121, GEOS2921, SOIL2002, LWSC2002 Prohibitions: GEOS3520 Assessment: One 2hr exam, one 2000w essay, one 2000w group-based prac report. Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
GEOS3920 has the same thematic content as GEOS3520 however with elements taught at an Advanced level
GEOS3524 Global Development and Livelihoods
Credit points: 6 Teacher/Coordinator: Dr Jeff Neilson, Dr Yayoi Lagerqvist Session: Semester 1 Classes: 2 lectures, 1 tutorial per week Prerequisites: 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience Prohibitions: GEOS3924, GEOS2112, GEOS2912 Assessment: One 2hr exam, one practical report, one 2000w essay, tutorial papers (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit of study provides students with grounding in core theories and frameworks used in Geography to account for the social, spatial and environmental unevenness in global development. During the first half of the semester, we focus on questions relating to who are the winners and losers from contemporary patterns of global economic change. This includes the analysis of relevant conceptual approaches to these questions (including comparative advantage, global value chain theory, regionalism, economic governance, development and post-development), plus 'hands-on' examination of the key institutions (such as the WTO and World Bank) and policy approaches that drive these changes. Then, in the second half of the semester, we adopt a livelihoods approach to assess these processes. In general, issues are tailored to themes being played out in Asia-Pacific countries. Students are expected to participate in a variety of practical class exercises throughout the semester. This unit provides a feeder-unit into the Asia-Pacific Field School.
or
GEOS3924 Global Development and Livelihoods (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Bill Pritchard Session: Semester 1 Classes: 2 lectures, 1 tutorial per week Prerequisites: 24 credit points of Intermediate units of study including a distinction in 6 credit points of Intermediate Geoscience Prohibitions: GEOS3524, GEOS2112, GEOS2912 Assessment: One 2hr exam, one practical report, one 2000w essay, tutorial papers (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
GEOS3924 has the same thematic content as GEOS3524 however with elements taught at an Advanced level.
GEOS3009 Coastal Environments and Processes
Credit points: 6 Teacher/Coordinator: Dr Ana Vila-Concejo, Dr Jody Webster Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour practical per week; weekend excursion. Prerequisites: (6 credit points of Intermediate Geoscience units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics or Mathematics or Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906)) Prohibitions: GEOS3909, MARS3003, MARS3105 Assessment: One 2 hour exam, research reports and an online quiz (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
The aim of this course is to introduce students to a variety of Coastal Environments and the major physical and chemical processes which control the morphodynamic evolution of these systems. The course offers a unique opportunity of learning the full spectrum of marine sedimentary environments from siliciclastic, temperate, highly urbanised and impacted estuarine ecosytems to carbonate, tropical, pristine and undeveloped/protected coastal and continental margin environments. The course includes field work in temperate environments and at One Tree Island on the Great Barrier Reef (GBR). The two parts of the course comprise physical processes in siliciclastic (temperate) and carbonate-dominated (tropical) coastal and continental margin environments. The first part of the course covers basic coastal environments and processes in estuarine and open coast environments and focuses on the morphodynamics of those environments, a fieldtrip to an open beach within Sydney is envisaged where students will learn basic skills for beach monitoringThe second part of the course covers the basic morphodynamics and processes impacting carbonate-dominated coastal and continental margin environments. The focus is on carbonate reefal and margin systems and their geologic and biologic responses to past, present and future environmental changes. These systems will also be studied in the field at The University of Sydney One Tree Island Research Station in the GBR and in some practicals Students who are unable participate in the GBR field trip will be given an alternative assignment.
or
GEOS3909 Coastal Environments and Processes (Adv)
Credit points: 6 Teacher/Coordinator: Dr Ana Vila Concejo Session: Semester 1 Classes: Three 1 hour lectures, two 3 hour practicals per week, fieldwork. Prerequisites: Distinction average in ((6 credit points of Intermediate Geoscience* units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics, Mathematics, Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))) Prohibitions: GEOS3009, MARS3003, MARS3105 Assessment: One 2 hour exam, two 1500 word reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: A distinction average in prior Geography or Geology units is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.
Advanced students will complete the same core lecture material as for GEOS3009 but will carry out more challenging projects, practicals, assignments and tutorials.
GEOS3014 GIS in Coastal Management
Credit points: 6 Teacher/Coordinator: Dr Eleanor Bruce Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour practical per week. Prerequisites: Either 12 credit points of Intermediate Geoscience units or [(GEOS2115, GEOS2915) and (BIOL2018 or BIOL2918 or BIOL2024 or BIOL2924 or BIOL2028 or BIOL2928)]. Prohibitions: GEOS3914, MARS3104 Assessment: One 2 hour exam, two project reports, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Coastal Management is about how scientific knowledge is used to support policy formulation and planning decisions in coastal environments. The course links coastal science to policy and practice in management of estuaries, beaches and the coastal ocean. The principles are exemplified through specific issues, such as coastal erosion, pollution, and impacts of climate-change. The issues are dealt with in terms of how things work in nature, and how the issues are handled through administrative mechanisms. These mechanisms involve planning strategies like Marine Protected Areas and setback limits on civil development in the coastal zone. The coastal environments and processes that are more relevant to coastal management including: rocky coasts; beaches, barriers and dunes; and coral reefs will also be introduced. At a practical level, the link between science and coastal management is given substance through development and use of 'decision-support models'. These models involve geocomputing methods that entail application of simulation models, remotely sensed information, and Geographic Information Systems (GIS). The course therefore includes both principles and experience in use of these methods to address coastal-management issues. (It thus also involves extensive use of computers.) Although the focus is on the coast, the principles and methods have broader relevance to environmental management in particular, and to problem-solving in general. That is, the course has vocational relevance in examining how science can be exploited to the benefit of society and nature conservation.
or
GEOS3914 GIS in Coastal Management (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Eleanor Bruce, Dr Ana Vila Concejo Session: Semester 2 Classes: Two hours of lectures, one 3 hour practical per week comprising one 1 hour practical demonstration and one 2 hour practical Prerequisites: Distinction average in either 12 credit points of Intermediate Geoscience units or [(GEOS2115 or GEOS2915) and (BIOL2018 or BIOL2918 or BIOL2024 or BIOL2924 or BIOL2028 or BIOL2928)]. Prohibitions: GEOS3014, MARS3104 Assessment: One 2 hour exam, project work, two practical-based project reports, fortnightly progress quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Department permission required for enrolment
Note: A distinction average in prior Geography, Geology or Marine Science units of study is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.
Advanced students will complete the same core lecture material as for GEOS3014 but will carry out more challenging projects, practicals, assignments and tutorials.
Different pathways are available for this major.
See the [[http://sydney.edu.au/handbooks/science||Faculty of Science Handbook]]
Geology and Geophysics
Junior (Level 1) units and Level 2 units
Some junior elective and intermediate GEOS units may be required to meet the prerequisites of Level 3 units listed for this major
Level 3 units
Four units (24 credit points) of Senior Geology and Geophysics units of study, including:
GEOS3008 Field Geology
Credit points: 6 Teacher/Coordinator: Prof Geoffrey Clarke Session: Semester 2a Classes: (Weeks 1-7): 14 days of field work Prerequisites: GEOS2124 or GEOS2924 Prohibitions: GEOS3908 Assessment: The field work will be assessed by written reports (up to 10 pages in total), field exercises and practical tests (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit is considered an essential component all Geology and Geophysics majors. All students will undertake a range of exercises, but concentrate on aspects that emphasise their chosen major: (1) field mapping and the analysis of geological objects in the field, in weakly to complexly deformed sedimentary and volcanic sequences; (2) field investigations of mineral deposits and their relationships to host rocks; and (3) the practical application of geophysical methods in field mapping. The field course complements other subject areas in Geology & Geophysics and will give students experience in the field identification of rocks and minerals, regional geology, stratigraphy, structure and rock relationships. Students will be required to pay the cost of hostel-style accommodation during field work, which may involve camping.
GEOS3908 Field Geology (Adv)
Credit points: 6 Teacher/Coordinator: Prof Geoffrey Clarke Session: Semester 2a Classes: 14 days of fieldwork. Prerequisites: GEOS2124 or GEOS2924 with a mark of 65% or greater Prohibitions: GEOS3008 Assessment: Written reports and field exercises (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Department permission required for enrolment
This unit has the same objectives as GEOS3008 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week prior to the field camp which is usually in the break between semester 1 and 2. This unit of study may be taken as part of the BSc (Advanced).
GEOS3101 Earth's Structure and Evolution
Credit points: 6 Teacher/Coordinator: A/Prof Patrice Rey, Prof Geoff Clarke Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week, and a 3-day excursion. Prerequisites: (GEOS2114 or GEOS2914) and (GEOS2124 or GEOS2924); or 24 credit points of Intermediate Science units of study and GEOS1003 with permission of the Head of School Prohibitions: GEOS3801, GEOS3003, GEOS3903, GEOS3004, GEOS3904, GEOS3006, GEOS3906, GEOS3017, GEOS3917 Assumed knowledge: GEOS2114, GEOS2124 Assessment: One 2 hour exam, practical and field reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
The Earth's crust and upper mantle, or lithosphere, are a consequence of dynamic and thermal processes operating since the beginning of the Archaean. This unit focuses on information and techniques that enable an understanding of these processes. The main topics presented in this unit include: the formation and evolution of oceanic and continental lithosphere; tectonic deformation, magmatism and metamorphism at plate boundaries; and the mesoscopic and microscopic analysis of igneous and metamorphic rocks. Practical classes and field exercises are designed to enable students to competently and independently identify the common crystalline rocks in hand-specimen; and to gather and interpret the structural field data which enables the determination of the structural style and deformational history presented in particular tectonic settings. The concepts and content presented in this unit are generally considered to be essential knowledge for geologists and geophysicists and provide a conceptual framework for their professional practice. Students wishing to specialise in the field and become professional geologists will normally need to expand upon the knowledge gained from this unit and either complete an honours project or progress to postgraduate coursework in this field.
GEOS3801 Earth's Structure and Evolutions (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Patrice Rey, Prof Geoff Clarke, Dr Nicolas Flament Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week. Prerequisites: Distinctions in (GEOS2114 or GEOS2914) and (GEOS2124 or GEOS2924); Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School Prohibitions: GEOS3101, GEOS3003, GEOS3903, GEOS3004, GEOS3904, GEOS3006, GEOS3906, GEOS3017, GEOS3917 Assumed knowledge: GEOS2114, GEOS2124 Assessment: One 2 hour exam, practical and field reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit has the same objectives as GEOS3101 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.
and at least two of:
GEOS3102 Global Energy and Resources
Credit points: 6 Teacher/Coordinator: Dr Derek Wyman, Dr Simon Williams, Dr Kara Matthews Session: Semester 1 Classes: Two 1-hour lectures and one 2-hour tutorial/practicals per week. Prerequisites: (GEOS2114 or GEOS2914) and (GEOS2124 or GEOS2924); or 24 credit points of Intermediate Science units of study and GEOS1003 with permission of the Head of School Prohibitions: GEOS3802, GEOS3003, GEOS3903, GEOS3004, GEOS3904, GEOS3006, GEOS3906, GEOS3017, GEOS3917 Assumed knowledge: GEOS2114 and GEOS2124 Assessment: One 2-hour exam, practical and reports (100%). Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit examines the processes that form energy and mineral resources, outlines the characteristics of major fossil fuel and metal ore deposits and introduces the principles that underpin exploration strategies used to discover and develop geological resources. The unit will focus on a variety of topics including: coal; petroleum formation and migration, hydrocarbon traps and maturation; precious metal, base metal and gemstone deposit types; and exploration strategies. An integrated approach will relate tectonic processes through time to the formation of fossil fuel and mineral provinces. Practical exercises will introduce students to the techniques used to identify economically viable geological resources using a variety of exercises based on actual examples of resource exploration drawn from both the petroleum and minerals industry.
GEOS3802 Global Energy and Resources (Adv)
Credit points: 6 Teacher/Coordinator: Dr Derek Wyman, Dr Simon Williams, Dr Kara Matthews Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week Prerequisites: Distinction in (GEOS2114 or GEOS2914) and (GEOS2124 or GEOS2924); Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School. Prohibitions: GEOS3102, GEOS3003, GEOS3903, GEOS3004, GEOS3904, GEOS3006, GEOS3906, GEOS3017, GEOS3917 Assumed knowledge: GEOS2114 and GEOS2124 Assessment: One 2 hour exam, practical and field reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit has the same objectives as GEOS3102 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.
GEOS3103 Environmental and Sedimentary Geology
Credit points: 6 Teacher/Coordinator: Dr Dan Penny (Coordinator), Prof Peter Flood Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week Prerequisites: (GEOS2124 or GEOS2924) and (GEOS2111 or (GEOS2911) or (GEOS2114 or GEOS2914) or (GEOS2113 or GEOS2913); or (GEOS1003 or GEOS1903) and 24 credit points of Intermediate Science units of study with permission of the Head of School. Prohibitions: GEOS3803 Assumed knowledge: GEOS1003, GEOS2124 Assessment: One 2 hour exam, practical reports and quizes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Sediments and sedimentary rocks cover most of the Earth's surface, record much of the Earth's geological and climatic history and host important resources such as petroleum, coal, water and mineral ores. The aim of this unit is to provide students with the skills required to examine, describe and interpret sediments and sedimentary rocks for a variety of different purposes. Specific foci of the unit will be the identification of the recent or ancient environment in which sedimentary materials were deposited, the environmental controls which produce sedimentary structures, and the processes that control the production, movement and storage of sediment bodies. On completion of this unit students will be familiar with the natural processes that produce and modify sediments across a range of environments at the Earth's surface, including fluvial, aeolian, lacustrine, marginal marine and deep marine environments. The various controls on the sedimentary record such as climate and sea-level change, as well as diagenesis and geochemical cycles will also be discussed. Practical exercises will require students to examine global datasets, and determine the properties and significance of sediments and sedimentary rocks. The course is relevant to students interested in petroleum or mineral exploration, environmental and engineering geology as well as marine geoscience.
Textbooks
Course notes will be available from the Copy Centre and an appropriate set of reference texts will be placed on special reserve in the library.
GEOS3014 GIS in Coastal Management
Credit points: 6 Teacher/Coordinator: Dr Eleanor Bruce Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour practical per week. Prerequisites: Either 12 credit points of Intermediate Geoscience units or [(GEOS2115, GEOS2915) and (BIOL2018 or BIOL2918 or BIOL2024 or BIOL2924 or BIOL2028 or BIOL2928)]. Prohibitions: GEOS3914, MARS3104 Assessment: One 2 hour exam, two project reports, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Coastal Management is about how scientific knowledge is used to support policy formulation and planning decisions in coastal environments. The course links coastal science to policy and practice in management of estuaries, beaches and the coastal ocean. The principles are exemplified through specific issues, such as coastal erosion, pollution, and impacts of climate-change. The issues are dealt with in terms of how things work in nature, and how the issues are handled through administrative mechanisms. These mechanisms involve planning strategies like Marine Protected Areas and setback limits on civil development in the coastal zone. The coastal environments and processes that are more relevant to coastal management including: rocky coasts; beaches, barriers and dunes; and coral reefs will also be introduced. At a practical level, the link between science and coastal management is given substance through development and use of 'decision-support models'. These models involve geocomputing methods that entail application of simulation models, remotely sensed information, and Geographic Information Systems (GIS). The course therefore includes both principles and experience in use of these methods to address coastal-management issues. (It thus also involves extensive use of computers.) Although the focus is on the coast, the principles and methods have broader relevance to environmental management in particular, and to problem-solving in general. That is, the course has vocational relevance in examining how science can be exploited to the benefit of society and nature conservation.
GEOS3803 Environmental & Sedimentary Geology(Adv)
Credit points: 6 Teacher/Coordinator: Dr Dan Penny (Coordinator), Prof Peter Flood Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week. Prerequisites: Distinctions in (GEOS2114 or (GEOS2914) and (GEOS2124 or (GEOS2924); Students who have a credit average for all Geoscience units may enrol in this unit with permission of the Head of School. Prohibitions: GEOS3103 Assumed knowledge: GEOS1003, GEOS2124 Assessment: One 2 hour exam, practical, field reports and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit has the same objectives as GEOS3103 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.
Textbooks
Course notes will be available from the Copy Centre and appropriate set of reference texts will be placed on special reserve in the library.
GEOS3804 Geophysical Methods (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Christian Heine (co-ordinator), Dr Simon Williams, Dr Nicolas Flament, Dr Sascha Brune Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour practical class per week. Prerequisites: Distinction in GEOS2114 or GEOS2914 and GEOS2124 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School Prohibitions: GEOS3104, GEOS3003, GEOS3903, GEOS3006, GEOS3906, GEOS3016, GEOS3916, GEOS3017, GEOS3917 Assessment: One 2 hour exam, practical work (100%) Practical field work: Geophysical Field Prac (details to be announced) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit has the same objectives as GEOS3104 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independant work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.
See the [[http://sydney.edu.au/handbooks/science||Faculty of Science Handbook]]
Government and International Relations
Junior (Level 1) units
Two level 1000 Government (GOVT) units
Level 2 and 3 units
At least 36 credit points of Level 2000 and Level 3000 GOVT units of study with at least 6 credit points of Level 3000 GOVT units of study.
See the [[http://sydney.edu.au/handbooks/arts||Faculty of Arts and Social Sciences Handbook]]
Note. Students may also complete a maximum of 12 credit points in cross-listed non-'GOVT' senior units of study as electives for this major. For details of all non-'GOVT' units of study that may be cross listed with this major, see the Faculty of Arts and Social Sciences website
Mathematics
Junior (Level 1) units
MATH1001 Differential Calculus
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1011, MATH1901, MATH1906, MATH1111, ENVX1001 Assumed knowledge: HSC Mathematics Extension 1 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1001 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study looks at complex numbers, functions of a single variable, limits and continuity, vector functions and functions of two variables. Differential calculus is extended to functions of two variables. Taylor's theorem as a higher order mean value theorem.
Textbooks
As set out in the Junior Mathematics Handbook.
MATH1002 Linear Algebra
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1902, MATH1014 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1003 Integral Calculus and Modelling
Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1004 Discrete Mathematics
Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1904 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1004 is designed to provide a thorough preparation for further study in Mathematics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science.
This unit provides an introduction to fundamental aspects of discrete mathematics, which deals with 'things that come in chunks that can be counted'. It focuses on the enumeration of a set of numbers, viz. Catalan numbers. Topics include sets and functions, counting principles, Boolean expressions, mathematical induction, generating functions and linear recurrence relations, graphs and trees.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1005 Statistics
Credit points: 3 Session: Semester 2,Summer Main,Winter Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1015, MATH1905, STAT1021, STAT1022, ECMT1010, ENVX1001, BUSS1020 Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1005 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit offers a comprehensive introduction to data analysis, probability, sampling, and inference including t-tests, confidence intervals and chi-squared goodness of fit tests.
Textbooks
As set out in the Junior Mathematics Handbook
Or parallel advanced units.
Level 2 and 3 units
Two of:
MATH2061 Linear Mathematics and Vector Calculus
Credit points: 6 Session: Semester 1,Summer Main Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: (MATH1011 or MATH1001 or MATH1901 or MATH1906) and (MATH1014 or MATH1002 or MATH1902) and (MATH1003 or MATH1903 or MATH1907) Prohibitions: MATH2961, MATH2067 Assessment: One 2 hour exam, assignments, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit starts with an investigation of linearity: linear functions, general principles relating to the solution sets of homogeneous and inhomogeneous linear equations (including differential equations), linear independence and the dimension of a linear space. The study of eigenvalues and eigenvectors, begun in junior level linear algebra, is extended and developed. The unit then moves on to topics from vector calculus, including vector-valued functions (parametrised curves and surfaces; vector fields; div, grad and curl; gradient fields and potential functions), line integrals (arc length; work; path-independent integrals and conservative fields; flux across a curve), iterated integrals (double and triple integrals; polar, cylindrical and spherical coordinates; areas, volumes and mass; Green's Theorem), flux integrals (flow through a surface; flux integrals through a surface defined by a function of two variables, though cylinders, spheres and parametrised surfaces), Gauss' Divergence Theorem and Stokes' Theorem.
or
MATH2961 Linear Mathematics & Vector Calculus Adv
Credit points: 6 Session: Semester 1 Classes: Four 1 hour lectures and one 1 hour tutorial per week. Prerequisites: (MATH1901 or MATH1906 or Credit in MATH1001) and (MATH1902 or Credit in MATH1002) and (MATH1903 or MATH1907 or Credit in MATH1003) Prohibitions: MATH2061, MATH2067 Assessment: 2 hour exam, quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit is an advanced version of MATH2061, with more emphasis on the underlying concepts and on mathematical rigour. Topics from linear algebra focus on the theory of vector spaces and linear transformations.
The connection between matrices and linear transformations is studied in detail. Determinants, introduced in first year, are revised and investigated further, as are eigenvalues and eigenvectors. The calculus component of the unit includes local maxima and minima, the inverse function theorem and Jacobians.
There is an informal treatment of multiple integrals: double integrals, change of variables, triple integrals, line and surface integrals, Green's theorem and Stokes' theorem.
MATH2065 Partial Differential Equations (Intro)
Credit points: 6 Session: Semester 2,Summer Main Classes: Three 1 hour lectures, one 1 hour tutorial, one 1 hour example class per week. Prerequisites: (MATH1011 or MATH1001 or MATH1901 or MATH1906) and (MATH1014 or MATH1002 or MATH1902) and (MATH1003 or MATH1903 or MATH1907) Prohibitions: MATH2965, MATH2067 Assessment: 2 hour exam, mid-semester test, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This is an introductory course in the analytical solutions of PDEs (partial differential equations) and boundary value problems. The techniques covered include separation of variables, Fourier series, Fourier transforms and Laplace transforms.
or
MATH2965 Partial Differential Equations Intro Adv
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: MATH2961 or Credit in MATH2061 Prohibitions: MATH2065, MATH2067 Assessment: 2 hour exam, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit of study is essentially an Advanced version of MATH2065, the emphasis being on solutions of differential equations in applied mathematics. The theory of ordinary differential equations is developed for second order linear equations, including series solutions, special functions and Laplace transforms, and boundary-value problems including separation of variables, Fourier series and Fourier transforms.
MATH2068 Number Theory and Cryptography
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: 6 credit points of Junior level Mathematics Prohibitions: MATH2988 Assumed knowledge: MATH1014 or MATH1002 or MATH1902 Assessment: 2 hour exam, assignments, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Cryptography is the branch of mathematics that provides the techniques for confidential exchange of information sent via possibly insecure channels. This unit introduces the tools from elementary number theory that are needed to understand the mathematics underlying the most commonly used modern public key cryptosystems. Topics include the Euclidean Algorithm, Fermat's Little Theorem, the Chinese Remainder Theorem, Möbius Inversion, the RSA Cryptosystem, the Elgamal Cryptosystem and the Diffie-Hellman Protocol. Issues of computational complexity are also discussed.
or
MATH2968 Algebra (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: 9 credit points of Junior Mathematics (advanced level or Credit at normal level) including (MATH1902 or Credit in MATH1002) Assessment: 2 hour examination, quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit provides an introduction to modern abstract algebra, via linear algebra and group theory. It extends the linear algebra covered in Junior Mathematics and in MATH2961, and proceeds to a classification of linear operators on finite dimensional spaces. Permutation groups are used to introduce and motivate the study of abstract goup theory. Topics covered include actions of groups on sets, subgroups, homomorphisms, quotient groups and the classification of finite abelian groups.
MATH2069 Discrete Mathematics and Graph Theory
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: 6 credit points of Junior level Mathematics Prohibitions: MATH2969 Assessment: One 2 hour exam, assignments, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit introduces students to several related areas of discrete mathematics, which serve their interests for further study in pure and applied mathematics, computer science and engineering. Topics to be covered in the first part of the unit include recursion and induction, generating functions and recurrences, combinatorics. Topics covered in the second part of the unit include Eulerian and Hamiltonian graphs, the theory of trees (used in the study of data structures), planar graphs, the study of chromatic polynomials (important in scheduling problems).
or
MATH2969 Discrete Mathematics & Graph Theory Adv
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: 9 credit points of Junior Mathematics (advanced level or Credit at the normal level) Prohibitions: MATH2069 Assessment: One 2-hour exam, assignments, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit will cover the same material as MATH2069 with some extensions and additional topics.
MATH2070 Optimisation and Financial Mathematics
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: (MATH1011 or MATH1001 or MATH1901 or MATH1906) and (MATH1014 or MATH1002 or MATH1902) Prohibitions: MATH2970 Assumed knowledge: MATH1003 or MATH1903 or MATH1907 Assessment: One 2 hour exam, assignments, quiz, project (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Students may enrol in both MATH2070 and MATH3075 in the same semester
Problems in industry and commerce often involve maximising profits or minimising costs subject to constraints arising from resource limitations. The first part of this unit looks at programming problems and their solution using the simplex algorithm; nonlinear optimisation & the Kuhn Tucker conditions.
The second part of the unit deals with utility theory and modern portfolio theory. Topics covered include: pricing under the principles of expected return and expected utility; mean-variance Markowitz portfolio theory, the Capital Asset Pricing Model, log-optimal portfolios and the Kelly criterion; dynamical programming. Some understanding of probability theory including distributions and expectations is required in this part.
Theory developed in lectures will be complemented by computer laboratory sessions using MATLAB. Minimal computing experience will be required.
or
MATH2970 Optimisation & Financial Mathematics Adv
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week (lectures given in common with MATH2070). Prerequisites: (MATH1901 or MATH1906 or Credit in MATH1001) and (MATH1902 or Credit in MATH1002) Prohibitions: MATH2070 Assumed knowledge: MATH1903 or MATH1907 or Credit in MATH1003 Assessment: One 2 hour exam, assignments, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Students may enrol in both MATH2970 and MATH3975 in the same semester
The content of this unit of study parallels that of MATH2070, but students enrolled at Advanced level will undertake more advanced problem solving and assessment tasks, and some additional topics may be included.
MATH2962 Real and Complex Analysis (Advanced)
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: (MATH1901 or MATH1906 or Credit in MATH1001) and (MATH1902 or Credit in MATH1002) and (MATH1903 or MATH1907 or Credit in MATH1003) Assessment: 2 hour exam, assignments, quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Analysis is one of the fundamental topics underlying much of mathematics including differential equations, dynamical systems, differential geometry, topology and Fourier analysis. Starting off with an axiomatic description of the real number system, this first course in analysis concentrates on the limiting behaviour of infinite sequences and series on the real line and the complex plane. These concepts are then applied to sequences and series of functions, looking at point-wise and uniform convergence. Particular attention is given to power series leading into the theory of analytic functions and complex analysis. Topics in complex analysis include elementary functions on the complex plane, the Cauchy integral theorem, Cauchy integral formula, residues and related topics with applications to real integrals.
MATH2968 Algebra (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: 9 credit points of Junior Mathematics (advanced level or Credit at normal level) including (MATH1902 or Credit in MATH1002) Assessment: 2 hour examination, quizzes, assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit provides an introduction to modern abstract algebra, via linear algebra and group theory. It extends the linear algebra covered in Junior Mathematics and in MATH2961, and proceeds to a classification of linear operators on finite dimensional spaces. Permutation groups are used to introduce and motivate the study of abstract goup theory. Topics covered include actions of groups on sets, subgroups, homomorphisms, quotient groups and the classification of finite abelian groups.
MATH2916 Working Seminar A (SSP)
Credit points: 3 Session: Semester 1 Classes: One 1 hour seminar per week. Prerequisites: By invitation, High Distinction average over 12 credit points of Advanced Junior Mathematics Assessment: One 1 hour presentation, 15-20 page essay (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Department permission required for enrolment
The main aim of this unit is to develop the students' written and oral presentation skills. The material will consist of a series of connected topics relevant to modern mathematics and statistics. The topics are chosen to suit the students' background and interests, and are not covered by other mathematics or statistics units. The first session will be an introduction on the principles of written and oral presentation of mathematics. Under the supervision and advice of the lecturer(s) in charge, the students present the topics to the other students and the lecturer in a seminar series and a written essay in a manner that reflects the practice of research in mathematics and statistics.
MATH2917 Working Seminar B (SSP)
Credit points: 3 Session: Semester 2 Classes: One 1 hour seminar per week. Prerequisites: By invitation, High Distinction average over 12 credit points of Advanced Junior Mathematics Assessment: One 1 hour presentation, 15-20 page essay (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
Note: Department permission required for enrolment
The main aim of this unit is to develop the students' written and oral presentation skills. The material will consist of a series of connected topics relevant to modern mathematics and statistics. The topics are chosen to suit the students' background and interests, and are not covered by other mathematics or statistics units. The first session will be an introduction on the principles of written and oral presentation of mathematics. Under the supervision and advice of the lecturer(s) in charge, the students present the topics to the other students and the lecturer in a seminar series and a written essay in a manner that reflects the practice of research in mathematics and statistics.
24 credits points from MATH3000 units
See the [[http://sydney.edu.au/handbooks/science||Faculty of Science Handbook]]
Soil Science
Departmental Permission is required to undertake this major.
Junior (Level 1) and level 2 units
Some junior and intermediate AGCH, MICR, LWSC or SOIL elective units may be required to meet the prerequisites of Level 3 units listed for this major. Please check each unit of study for further details
Level 3 units
ENVX3001 Environmental GIS
Credit points: 6 Teacher/Coordinator: A/Prof Inakwu Odeh Session: Semester 2 Classes: Three-day field trip, (2 lec & 2 prac/wk). Assumed knowledge: least 48 credit points in second year agriculture/science units. Assessment: One 15 min presentation (10%), 3500w prac report (35%), 1500w report on trip excur (15%), 2 hr exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This unit is designed to impart knowledge and skills in spatial analysis and geographical information science (GISc) for decision-making in an environmental context. The lecture material will present several themes: principles of GISc, geospatial data sources and acquisition methods, processing of geospatial data and spatial statistics. Practical exercises will focus on learning geographical information systems (GIS) and how to apply them to land resource assessment, including digital terrain modelling, land-cover assessment, sub-catchment modelling, ecological applications, and soil quality assessment for decisions regarding sustainable land use and management. A 3 day field excursion during the mid-semester break will involve a day of GPS fieldwork at Arthursleigh University farm and two days in Canberra visiting various government agencies which research and maintain GIS coverages for Australia. By the end of this UoS, students should be able to: differentiate between spatial data and spatial information; source geospatial data from government and private agencies; apply conceptual models of spatial phenomena for practical decision-making in an environmental context; apply critical analysis of situations to apply the concepts of spatial analysis to solving environmental and land resource problems; communicate effectively results of GIS investigations through various means- oral, written and essay formats; and use a major GIS software package such as ArcGIS.
Textbooks
Burrough, P.A. and McDonnell, R.A. 1998. Principles of Geographic Information Systems. Oxford University Press: Oxford.
SOIL3009 Contemporary Field and Lab Soil Science
Credit points: 6 Teacher/Coordinator: Prof Alex McBratney (coordinator), A/Prof Balwant Singh, A/Prof. Stephen Cattle, A/Prof Budiman Minasny Session: Semester 1 Classes: (2 lec, 2 prac)/wk, 6-day field excursion Prerequisites: SOIL2003 Assessment: 1 x viva voce exam (40%), pedology written assessments (15%), soil physics written assessments (15%), soil chemistry written assessments (15%), 1 x group presentation (5%), 1 x synthesis paper (10%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This is a theoretical and empirical unit providing specialised training in three important areas of contemporary soil science, namely pedology, soil chemistry and soil physics. The key concepts of these sub-disciplines will be outlined and strengthened by hands-on training in essential field and laboratory techniques. All of this is synthesized by placing it in the context of soil distribution and use in North-Western New South Wales. The unit is motivated by the teaching team's research in this locale. It builds on students existing soil science knowledge gained in SOIL2003. After completion of the unit, students should be able to articulate the advantages and disadvantages of current field & laboratory techniques for gathering necessary soil information, and simultaneously recognise key concepts and principles that guide contemporary thought in soil science. Students will be able to synthesise soil information from a multiplicity of sources and have an appreciation of the cutting edge areas of soil research. By investigating the contemporary nature of key concepts, students will develop their skills in research and inquiry. Students will develop their communication skills through report writing and oral presentations and will also articulate an openness to new ways of thinking which augments intellectual autonomy. Teamwork and collaborative efforts are encouraged in this unit.
Textbooks
D. Hillel. 2004. Introduction to Environmental Soil Physics. Elsevier Science, San Diego, CA, USA
SOIL3010 The Soil at Work
Credit points: 6 Teacher/Coordinator: Prof Alex McBratney (coordinator)
A/Prof Balwant Singh, A/Prof. Stephen Cattle (facilitators) plus research-only academics Session: Semester 2 Classes: Problem-based unit: each student completes 2 problems; 4 x 3 hr workshops per problem (each student attends 8 workshops in total) Prerequisites: SOIL2003 or SOIL2004 Assessment: For each of two scenarios:
Statement of the problem report (2x12.5%) - shared info, but two team reports; How to tackle problem seminar (2x12.5%) - team seminars, before fieldwork, analyses done; Results seminar (2x12.5%) - team seminars; Final report (2x12.5%) - individual work. Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This is a problem-based applied soil science unit. It is designed to allow students to identify soil-related problems in the real-world and by working in a group and with an end-user to suggest short and long-term solutions to such problems. This is a core unit for students majoring or specializing in soil science and an elective unit for those wishing to gain an understanding of environmental problem-solving. It utilises and reinforces soil-science knowledge gained in SOIL2003 and/or SOIL2004 and problem-solving skills gained during the degree program. This unit will address real-world scenarios which involve soil-related problems such as carbon management, structural decline, acidification, salinisation and contamination. Students will gain some understanding of the concept of sustainability, and will be able to identify the causes of problems by reference to the literature, discussion with landusers and by the design and execution of key experiments and surveys. They will gain a focused knowledge of the key soil drivers to environmental problems and will have some understanding on the constraints surrounding potential solutions. By designing and administering strategies to tackle real-world soil issues students will develop their research and inquiry skills and enhance their intellectual autonomy. By producing reports and seminars that enables understanding by an end-user students will improve the breadth of their communication skills.
Textbooks
I.W.Heathcote 1997. Environmental Problem Solving: A Case Study Approach. McGraw-Hill, New York, NY, USA.
and one of
AGCH3033 Environmental Chemistry
Credit points: 6 Teacher/Coordinator: Dr. Feike Dijkstra (Coordinator); Dr. Claudia Keitel; Dr. Malcolm Possell
A/Prof. Balwant Singh Session: Semester 2 Classes: 2 lec & 3hr prac/wk Prohibitions: CHEM2404 Assumed knowledge: SOIL2003, LWSC2002 Assessment: 1x 2hr exam (50%), prac reports and essay (40%), oral presentation (10%). Practical field work: Practical reports and essay writing. Preparation reading for practical or field trips, preparation for group presentation, exam preparation. Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This course provides basic concepts in environmental chemistry underpinning many of the environmental problems humans are faced with, with a focus on agricultural and natural ecosystems.
AGCH3033 is a core unit for the BEnvSys degree and an elective unit suitable for the BScAgr, BResEc and BAnVetBioSc degrees, building on intermediate units in chemistry and biology.
Sources, reactions and fate of chemical species will be investigated in air, water, soil and biota. Case studies about human impacts on the environment will be integrated in the lectures, laboratory classes and field trip.
At the end students have an understanding of chemical concepts that are at the root of many environmental problems in agricultural and natural ecosystems. This unit will provide students with tools to identify and assess the chemistry behind environmental problems and will guide students in developing methods to manage these problems.
Students will enhance their skills in problem definition, assessing sources of information, team-work and effectively communicating environmental issues from a chemical perspective through laboratory reports and oral presentation.
Textbooks
Andrews et al. 2004. An Introduction to Environmental Chemistry.
LWSC3007 Advanced Hydrology and Modelling
Credit points: 6 Teacher/Coordinator: Dr. Willem Vervoort Session: Semester 1 Classes: 2 hr lectures/ week, 1 hr on-line and 2 hr practical/week Prerequisites: LWSC2002 Assessment: Practical reports (50%), take-home exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This unit of study is designed to allow students to examine advanced hydrological modeling and sampling designs focusing on catchment level responses and uncertainty.
This unit builds on the theoretical knowledge gained in LWSC2002 and possibly GEOG2321. Students will learn how to develop their own simulation model of catchment hydrological processes in R and review the possibilities and impossibilities of using simulation models for catchment management. Students will further investigate optimal sampling techniques for water quality data based on understanding the variability in hydrological responses. At the end of this unit, students will be able to build their own catchment model and calibrate this model, articulate advantages and disadvantages of using simulation models for catchment management, justify the choice of a simulation model for a particular catchment management problem, identify issues in relation to uncertainty in water quality and quantity, develop an optimal water quality sampling scheme. The students will gain research and inquiry skills through research based group projects, information literacy and communication skills through on-line discussion postings, laboratory reports and a presentation and personal and intellectual autonomy through working in groups.
Textbooks
Beven, K.J. Rainfall-Runoff modeling, The Primer, John Wiley and Sons, Chichester, 2001
PPAT4005 Soil Biology
Credit points: 6 Teacher/Coordinator: Prof David Guest Session: Semester 1 Classes: (2 tut, 3 hrs prac)/wk Prerequisites: MICR2024 or 6cp intermediate microbiology Assessment: Tutorial papers (30%), project proposal (10%), project report (50%), peer review (10%). Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Agriculture and Environment
This unit investigates the diversity of organisms living in the soil, their biology, interactions and ecology, and their roles in maintaining and improving soil function. The unit is an elective for BScAgr, BHortSc and BSc students. It builds on the material introduced in MICR2024, PPAT3003 and BIOL3017. Undertaking this unit will develop skills in monitoring soil microbes, designing, conducting and analysing experiments. At the completion of this unit, students will be able to exercise problem-solving skills (developed through practical experiments, projects and tutorial discussions), think critically, and organise knowledge (from consideration of the lecture material and preparation of project reports), and expand from theoretical principles to practical explanations (through observing and reporting on project work). Students will consolidate their teamworking skills, develop self-directed study skills and plan effective work schedules, use statistical analysis in research, keep appropriate records of laboratory research, work safely in a research laboratory and operate a range of scientific equipment. Students will gain research and inquiry skills through group research projects, information literacy and communication skills through assessment tasks and personal and intellectual autonomy through working in groups.
Textbooks
Sylvia et al. 2005. Principles and Applications of Soil Microbiology 2nd ed. Pearson.
Note. Some senior units for this major may have specific prerequisites for enrolment. Please check each unit of study for further detail
Statistics
Junior (Level 1) units
MATH1001 Differential Calculus
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1011, MATH1901, MATH1906, MATH1111, ENVX1001 Assumed knowledge: HSC Mathematics Extension 1 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1001 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study looks at complex numbers, functions of a single variable, limits and continuity, vector functions and functions of two variables. Differential calculus is extended to functions of two variables. Taylor's theorem as a higher order mean value theorem.
Textbooks
As set out in the Junior Mathematics Handbook.
MATH1002 Linear Algebra
Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1902, MATH1014 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1003 Integral Calculus and Modelling
Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1005 Statistics
Credit points: 3 Session: Semester 2,Summer Main,Winter Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1015, MATH1905, STAT1021, STAT1022, ECMT1010, ENVX1001, BUSS1020 Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
MATH1005 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit offers a comprehensive introduction to data analysis, probability, sampling, and inference including t-tests, confidence intervals and chi-squared goodness of fit tests.
Textbooks
As set out in the Junior Mathematics Handbook
Or parallel advanced units.
Level 2 and 3 units
STAT2011 Statistical Models
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory week. Prerequisites: (MATH1001 or MATH1901 or MATH1906 or MATH1011) and (MATH1005 or MATH1905 or MATH1015 or STAT1021 or ECMT1010 or BUSS1020) Prohibitions: STAT2911 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit provides an introduction to univariate techniques in data analysis and the most common statistical distributions that are used to model patterns of variability. Common discrete random models like the binomial, Poisson and geometric and continuous models including the normal and exponential will be studied. The method of moments and maximum likelihood techniques for fitting statistical distributions to data will be explored. The unit will have weekly computer classes where candidates will learn to use a statistical computing package to perform simulations and carry out computer intensive estimation techniques like the bootstrap method.
or
STAT2911 Probability and Statistical Models (Adv)
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: (MATH1903 or MATH1907 or Credit in MATH1003) and (MATH1905 or MATH1904 or Credit in MATH1005 or Credit in ECMT1010 or Credit in BUSS1020) Prohibitions: STAT2011 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit is essentially an advanced version of STAT2011, with an emphasis being on the mathematical techniques used to manipulate random variables and probability models. Common random variables including the Poisson, normal, beta and gamma families are introduced. Probability generating functions and convolution methods are used to understand the behaviour of sums of random variables. The method of moments and maximum likelihood techniques for fitting statistical distributions to data will be explored. The unit will have weekly computer classes where candidates will learn to use a statistical computing package to perform simulations and carry out computer intensive estimation techniques like the bootstrap method.
STAT2012 Statistical Tests
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: MATH1005 or MATH1905 or MATH1015 or ECMT1010 or BUSS1020 Prohibitions: STAT2912 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit provides an introduction to the standard methods of statistical analysis of data: Tests of hypotheses and confidence intervals, including t-tests, analysis of variance, regression - least squares and robust methods, power of tests, non-parametric tests, non-parametric smoothing, tests for count data, goodness of fit, contingency tables. Graphical methods and diagnostic methods are used throughout with all analyses discussed in the context of computation with real data using an interactive statistical package.
or
STAT2912 Statistical Tests (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: MATH1905 or Credit in MATH1005 or Credit in ECMT1010 or Credit in BUSS1020 Prohibitions: STAT2012 Assumed knowledge: STAT2911 Assessment: One 2-hour exam, assignments and/or quizzes, computer practical reports and one computer practical exam (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day Faculty: Science
This unit is essentially an advanced version of STAT2012 with an emphasis on both methods and the mathematical derivation of these methods: Tests of hypotheses and confidence intervals, including t-tests, analysis of variance, regression - least squares and robust methods, power of tests, non-parametric methods, non-parametric smoothing, tests for count data, goodness of fit, contingency tables. Graphical methods and diagnostic methods are used throughout with all analyses discussed in the context of computation with real data using an interactive statistical package.
And 24 credit points of STAT3000 units
See the [[http://sydney.edu.au/handbooks/science||Faculty of Science Handbook]]